
!

"

#

$

Talk at

Karlsruhe, Germany, November 25th, 2005

Fuzzy Description Logics,

Fuzzy Logic Programming,

their Combination (and the Semantic Web)

Umberto Straccia

I.S.T.I. - C.N.R. Pisa, Italy

straccia@isti.cnr.it
“Calla is a very large,
long white flower on thick
stalks”

1

!

"

#

$

Outline

• Preliminaries: short recall on classical

– Description Logics (DLs)

– Logic Programs (LPs)

– Description Logic Programs (DLPs)

• Semantic Web and Ontologies

• Fuzzy

– Description Logics

– Logic Programs

– Description Logic Programs

• Conclusions

2

!

"

#

$

Basics of

Description Logics

Logic Programs

Description Logic Programs

3

!

"

#

$

DLs Basics

• Concept names are equivalent to unary predicates

– In general, concepts equiv to formulae with one free variable

• Role names are equivalent to binary predicates

– In general, roles equiv to formulae with two free variables

• Individual names are equivalent to constants

• Operators restricted so that:

– Language is decidable and, if possible, of low complexity

– No need for explicit use of variables
∗ Restricted form of ∃ and ∀

– Features such as counting can be succinctly expressed

4

!

"

#

$

The DL Family

• A given DL is defined by set of concept and role forming operators

• Basic language: ALC(Attributive Language with Complement)

Syntax Example

C, D → " | (top concept)

⊥ | (bottom concept)

A | (atomic concept) Human

C $D | (concept conjunction) Human $ Male

C %D | (concept disjunction) Nice $ Rich

¬C | (concept negation) ¬Meat
∃R.C | (existential quantification) ∃has child.Blond

∀R.C (universal quantification) ∀has child.Human

C (D (inclusion axiom) Happy Father (Man $ ∃has child.Female

a:C (assertion) John:Happy Father

5

!

"

#

$

DLs Semantics

• Interpretation: I = (∆I , ·I), where ∆I is the domain (a non-empty set), ·I is an

interpretation function that maps:

– Concept (class) name A into a function AI : ∆I → {0, 1}
– Role (property) name R into a function RI : ∆I ×∆I → {0, 1}
– Individual name a into an element of ∆I

• ALC mapping to FOL:

#(x) $→ 1 ⊥ (x) $→ 0

A(x) $→ A(x) (C1 & C2)(x) $→ C1(x) ∧ C2(x)

(C1 (C2)(x) $→ C1(x) ∨ C2(x) (¬C)(x) $→ ¬C(x)

(∃R.C)(x) $→ ∃y.R(x, y) ∧ C(y) (∀R.C)(x) $→ ∀y.R(x, y) ⇒ C(y)

C - D $→ ∀x.C(x) ⇒ D(x) a:C $→ C(a)

6

!

"

#

$

Note on DL naming

AL: C, D −→ " | ⊥ |A |C $D | ¬A | ∃R." |∀R.C

C: Concept negation, ¬C. Thus, ALC = AL + C

S: Used for ALC with transitive roles R+

U: Concept disjunction, C1 % C2

E: Existential quantification, ∃R.C

H: Role inclusion axioms, R1 (R2, e.g. is component of (is part of

N : Number restrictions, (≥ n R) and (≤ n R), e.g. (≥ 3 has Child) (has at least 3 children)

Q: Qualified number restrictions, (≥ n R.C) and (≤ n R.C), e.g. (≤ 2 has Child.Adult) (has at
most 2 adult children)

O: Nominals (singleton class), {a}, e.g. ∃has child.{mary}.
Note: a:C equiv to {a} (C and (a, b):R equiv to {a} (∃R.{b}

I: Inverse role, R−, e.g.

F: Functional role, f

For instance,

SHIF = S + H + I + F = ALCR+HIF
SHOIN = S + H + O + I + N = ALCR+HOIN

7

!

"

#

$

Concrete domains

• Concrete domains: integers, strings, . . .

• Clean separation between object classes and concrete domains

– D = 〈∆D,ΦD〉
– ∆D is an interpretation domain

– ΦD is the set of concrete domain predicates d with a predefined arity n and fixed

interpretation dD : ∆n
D → {0, 1}

– Concrete properties: RI : ∆I ×∆D → {0, 1}, e.g., (tim, 14):hasAge,

(sf, “SoftComputing”):hasAcronym

• Philosophical reasons: concrete domains structured by built-in predicates

• Practical reasons:

– language remains simple and compact

– Semantic integrity of language not compromised

– Implementability not compromised can use hybrid reasoner

∗ Only need sound and complete decision procedure for d1
I ∧ . . . ∧ dn

I , where di is a

(posssibly negated) concrete property

• Notation: (D). E.g., ALC(D) is ALC + concrete domains

8

!

"

#

$

LPs Basics (for ease, without default negation)

• Predicates are n-ary

• Terms are variables or constants

• Rules are of the form

B1(x1) ∧ . . . ∧ Bn(xn) ⇒ P (x)

For instance,

has parent(x, y) ∧ Male(y) ⇒ has father(x, y)

• Facts are rules with empty body

For instance,
has parent(mary, jo)

9

!

"

#

$

LPs Semantics: FOL semantics

• P∗ is constructed as follows:

1. set P∗ to the set of all ground instantiations of rules in P;

2. if atom A is not head of any rule in P∗, then add 0 ⇒ A to P∗;

3. replace several rules in P∗ having same head

ϕ1 ⇒ A

ϕ2 ⇒ A

...

ϕn ⇒ A






with ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn ⇒ A .

• Note: in P∗ each atom A ∈ BP is head of exaclty one rule

• Herbrand Base of P is the set BP of ground atoms

• Interpretation is a function I : BP → {0, 1}.

• Model I |= P iff for all r ∈ P∗ I |= r, where I |= ϕ⇒ A iff I(ϕ) ≤ I(A)

• Least model exists and is least fixed-point of TP (I)(A) = I(ϕ), for all ϕ⇒ A ∈ P∗

10

!

"

#

$

DLPs Basics

• Combine DLs with LPs:

– DL atoms and roles may appear in rules

made by(x, y) ∧ 〈Chinese Company〉(y) ⇒ prize(x, low)

Chinese Company % ∃has location.China

• Knowledge Base is a pair KB = 〈P,Σ〉, where

– P is a logic program

– Σ is a DL knowledge base (set of assertions and inclusion axioms)

11

!

"

#

$

DLPs Semantics

• Semantics: two main approaches

1. Axiomatic approach: DL atoms and roles are managed uniformely

– I is a model of KB = 〈P,Σ〉 iff I |= P and I |= Σ

2. DL-log approach: DL atoms and roles are procedural attachments (calls to a

DL theorem prover)

– I is a model of KB = 〈P,Σ〉 iff IΣ |= P
– IΣ is a model of a ground non-DL atom A ∈ BP iff I(A) = 1

– IΣ is a model of a ground DL atom 〈A〉(a) iff Σ |= a:A

– IΣ is a model of a ground DL role 〈R〉(a, b) iff Σ |= (a, b):R

• Axiomatic approach: easy to get undecidability results (e.g. recursive rules + ∀)

• DL-log entailment ! Axiomatic entailment

• Axiomatic approach does not enjoy the minimal model property of LPs

• DL-log has the minimal model property of LPs and a fixed-point

characterization: TP(I)(A) = IΣ(ϕ), for all ϕ ⇒ A ∈ P∗

12

!

"

#

$

Basics of the Semantic Web and Ontologies

13

!

"

#

$

The Semantic Web Vision and DLs

• The WWW as we know it now

– 1st generation web mostly handwritten HTML pages

– 2nd generation (current) web often machine generated/active

– Both intended for direct human processing/interaction

• In next generation web, resources should be more accessible to automated
processes

– To be achieved via semantic markup

– Metadata annotations that describe content/function

14

!

"

#

$

Ontologies

• Semantic markup must be meaningful to automated processes

• Ontologies will play a key role

– Source of precisely defined terms (vocabulary)

– Can be shared across applications (and humans)

• Ontology typically consists of:

– Hierarchical description of important concepts in domain

– Descriptions of properties of instances of each concept

• Ontologies can be used, e.g.

– To facilitate agent-agent communication in e-commerce

– In semantic based search

– To provide richer service descriptions that can be more flexibly
interpreted by intelligent agents

15

!

"

#

$

Example Ontology

• Vocabulary and meaning (definitions)

– Elephant is a concept whose members are a kind of animal

– Herbivore is a concept whose members are exactly those animals who
eat only plants or parts of plants

– Adult Elephant is a concept whose members are exactly those
elephants whose age is greater than 20 years

• Background knowledge/constraints on the domain (general axioms)

– Adult Elephants weigh at least 2,000 kg

– All Elephants are either African Elephants or Indian Elephants

– No individual can be both a Herbivore and a Carnivore

16

!

"

#

$

Ontology Description Languages

• Should be sufficiently expressive to capture most useful aspects of domain

knowledge representation

• Reasoning in it should be decidable and efficient

• Many different languages has been proposed: RDF, RDFS, OIL, DAML+OIL

• OWL (Ontology Web Language) is the current emerging language. There are

three species of OWL

– OWL full is union of OWL syntax and RDF (but, undecidable)

– OWL DL restricted to FOL fragment (reasoning problem in NEXPTIME)

∗ based on SHIQ Description Logic (ALCHIQR+)

– OWL Lite is easier to implement subset of OWL DL (reasoning problem in

EXPTIME)

∗ based on SHIF Description Logic (ALCHIFR+)

• SWRL, a Semantic Web Rule Language combines OWL and RuleML

17

!

"

#

$

OWL DL

Abstract Syntax DL Syntax Example

Descriptions (C)

A (URI reference) A Conference

owl:Thing "
owl:Nothing ⊥
intersectionOf(C1 C2 . . .) C1 $ C2 Reference $ Journal

unionOf(C1 C2 . . .) C1 % C2 Organization % Institution

complementOf(C) ¬C ¬ MasterThesis

oneOf(o1 . . .) {o1, . . .} {"WISE","ISWC",...}
restriction(R someValuesFrom(C)) ∃R.C ∃parts.InCollection
restriction(R allValuesFrom(C)) ∀R.C ∀date.Date
restriction(R hasValue(o)) R : o date : 2005

restriction(R minCardinality(n)) (≥ n R) ! 1 location

restriction(R maxCardinality(n)) (≤ n R) " 1 publisher

restriction(U someValuesFrom(D)) ∃U.D ∃issue.integer
restriction(U allValuesFrom(D)) ∀U.D ∀name.string
restriction(U hasValue(v)) U : v series : "LNCS"

restriction(U minCardinality(n)) (≥ n U) ! 1 title

restriction(U maxCardinality(n)) (≤ n U) " 1 author

18

!

"

#

$

Abstract Syntax DL Syntax Example

Axioms

Class(A partial C1 . . . Cn) A (C1 $. . . $ Cn Human (Animal $ Biped

Class(A complete C1 . . . Cn) A = C1 $. . . $ Cn Man = Human $ Male

EnumeratedClass(A o1 . . . on) A = {o1} % . . . % {on} RGB = {r} % {g} % {b}
SubClassOf(C1C2) C1 (C2

EquivalentClasses(C1 . . . Cn) C1 = . . . = Cn

DisjointClasses(C1 . . . Cn) Ci $ Cj =⊥, i ,= j Male (¬Female
ObjectProperty(R super (R1) . . . super (Rn)) R (Ri HasDaughter (hasChild

domain(C1) . . . domain(Cn) (≥ 1 R) (Ci (≥ 1 hasChild) (Human

range(C1) . . . range(Cn) " (∀R.Di " (∀hasChild.Human
[inverseof(R0)] R = R−

0 hasChild = hasParent−

[symmetric] R = R− similar = similar−

[functional] " ((≤ 1 R) " ((≤ 1 hasMother)

[Inversefunctional] " ((≤ 1 R−)

[Transitive] Tr(R) Tr(ancestor)

SubPropertyOf(R1R2) R1 (R2

EquivalentProperties(R1 . . . Rn) R1 = . . . = Rn cost = price

AnnotationProperty(S)

19

!

"

#

$

Abstract Syntax DL Syntax Example

DatatypeProperty(U super (U1) . . . super (Un)) U (Ui

domain(C1) . . . domain(Cn) (≥ 1 U) (Ci (≥ 1 hasAge) (Human

range(D1) . . . range(Dn) " (∀U.Di " (∀hasAge.posInteger
[functional] " ((≤ 1 U) " ((≤ 1 hasAge)

SubPropertyOf(U1U2) U1 (U2 hasName (hasFirstName

EquivalentProperties(U1 . . . Un) U1 = . . . = Un

Individuals

Individual(o type (C1) . . . type (Cn)) o:Ci tim:Human

value(R1o1) . . . value(Rnon) (o, oi):Ri (tim, mary):hasChild

value(U1v1) . . . value(Unvn) (o, v1):Ui (tim, 14):hasAge

SameIndividual(o1 . . . on) o1 = . . . = on president Bush = G.W.Bush

DifferentIndividuals(o1 . . . on) oi ,= oj , i ,= j john ,= peter

20

!

"

#

$

XML representation of OWL statements

E.g., Person & ∀hasChild.(Doctor ' ∃hasChild.Doctor):

21

!

"

#

$

Fuzzy

Description Logics

Logic Programs

Description Logic Programs

22

!

"

#

$

Objective

• To extend classical DLs and LPs towards the representation of and
reasoning with vague concepts

• To show some applications

• Development of practical reasoning algorithms

23

!

"

#

$

A clarification

• Uncertainty theory: statements rather than being either true or false, are true or false

to some probability or possibility/necessity

– E.g., “It is possible that it will rain tomorrow”

– Usually we have a possible world semantics with a distribution over possible worlds:

W ={I classical interpretation} (I(ϕ) ∈ {0, 1})

µ : W → [0, 1] (µ(I) ∈ [0, 1])

• Imprecision theory: statements are true to some degree which is taken from a truth

space

– E.g., “Chinese items are cheap”

– Truth space: set of truth values L and an partial order ≤
– Many-valued Interpretation: a function I mapping formuale into L, i.e. I(ϕ) ∈ L

– Fuzzy Logic: L = [0, 1]

• Uncertainty and imprecision theory: “It is possible that it will be hot tomorrow”

• In this work we deal with imprecision and, thus, statements have a degree of truth.

24

!

"

#

$

Example (fuzzy DL-Lite, Current work)

Hotel (∃hasLocation
Conference (∃hasLocation

Hotel (¬Conference
LocationI ⊆ GISCoordinates

distanceI : GISCoord× GISCoord→ N
distance(x, y) = . . .

closeI : N → [0, 1]

close(x) = max(0, 1− x
1000)

hasLocation hasLocation distance

hl1 cl1 300

hl1 cl2 500

hl2 cl1 750

hl2 cl2 750

.

.

.
.
.
.

HotelID hasLocation

h1 hl1

h2 hl2

.

.

.
.
.
.

ConferenceID hasLocation

c1 cl1

c2 cl2

.

.

.
.
.
.

HotelID closeness degree

h1 0.7

h2 0.25

.

.

.
.
.
.

“Find a hotel close to conference c1”:

Hotel(h)∧hasLocation(h, hl)∧Conference(c1)∧hasLocation(c1, cl)∧distance(hl, cl, d)∧close(d)⇒
Query(c1, h)

25

!

"

#

$

Example (Logic-based information retrieval model)

Bird (Animal

Dog (Animal

snoopy : Dog

woodstock : Bird

ImageRegion Object ID isAbout

o1 snoopy 0.8

o2 woodstock 0.7

.

.

.
.
.
.

ImageRegion(ir) ∧ isAbout(ir, x) ∧ Animal(x)⇒ Query(ir)

26

!

"

#

$

Example (Graded Entailment)

audi tt mg ferrari enzo

Car speed

audi tt 243

mg ≤ 170

ferrari enzo ≥ 350

SportsCar = Car $ ∃hasSpeed.very(High)

K |= 〈ferrari enzo:SportsCar, 1〉
K |= 〈audi tt:SportsCar, 0.92〉
K |= 〈audi tt:¬SportsCar, 0.72〉

27

!

"

#

$

Example (Graded Subsumption)

Minor = Person & ∃hasAge. ≤18

YoungPerson = Person & ∃hasAge.Young

K |= 〈Minor * YoungPerson, 0.2〉

Note: without an explicit membership function of Young, this inference cannot
be drawn

28

!

"

#

$

Example with fuzzy LPs (current work)

F =






Experience(John) ← 0.7

Risk(John) ← 0.5

Sport car(John) ← 0.8

R =






Good driver(X) ← Experience(X) ∧ ¬Risk(X)
Risk(X) ← 0.8 · Young(X)
Risk(X) ← 0.8 · Sport car(X)

Risk(X) ← Experience(X) ∧ ¬Good driver(X)

Then R ∪ F |= 〈Risk(John), 0.64〉

29

!

"

#

$

Example (Distributed Information Retrieval)

Then the agent has to perform automatically the following steps:

1. the agent has to select a subset of relevant resources S ′ ⊆ S , as it is not

reasonable to assume to access to and query all resources (resource

selection/resource discovery);

2. for every selected source Si ∈ S ′ the agent has to reformulate its information

need QA into the query language Li provided by the resource (schema

mapping/ontology alignment);

3. the results from the selected resources have to be merged together (data

fusion/rank aggregation)

30

!

"

#

$

• Resource selection/resource discovery:

– Use techniques from Distributed Information Retrieval, e.g. CORI

• Schema mapping/ontology alignment:

– Use machine learning techniques, (implemented in oMap)
∗ Learns automatically weighted rules, like (aligning Google- Yahoo

directories)
Mechanical and Aerospace Engineering(d) ← 0.51 · Aeronautics and Astronautics(d)

• Data fusion/rank aggregation:

– Use techniques from Information Retrieval and/or Voting Systems,
e.g. CombMNZ or Borda count

31

!

"

#

$

Propositional Fuzzy Logics Basics

• Formulae: propositional formulae

• Truth space is [0, 1]

• Formulae have a a degree of truth in [0, 1]

• Interpretation: is a mapping I : Atoms → [0, 1]

• Interpretations are extended to formulae using norms to interpret connectives

32

!

"

#

$

negation

n(0) = 1

a ≤ b implies n(b) ≤ n(a)

n(n(a)) = a

t-norm (conjunction)

t(a, 1) = a

b ≤ c implies t(a, b) ≤ t(a, c)

t(a, b) = t(b, a)

t(a, t(b, c)) = t(t(a, b), c)

s-norm (disjunction)

s(a, 0) = a

b ≤ c implies s(a, b) ≤ s(a, c)

s(a, b) = s(b, a)

s(a, s(b, c)) = s(s(a, b), c)

i-norm (implication)

a ≤ b implies i(a, c) ≥ i(b, c)

b ≤ c implies i(a, b) ≤ i(a, c)

i(0, b) = 1

i(a, 1) = 1

Usually,

i(a, b) = sup{c : t(a, c) ≤ b}

33

!

"

#

$

Typical norms

Lukasiewicz Logic Gödel Logic Product Logic Zadeh

¬x 1− x
if x = 0 then 1

else 0

if x = 0 then 1

else 0
1− x

x ∧ y max(x + y − 1, 0) min(x, y) x · y min(x, y)

x ∨ y min(x + y, 1) max(x, y) x + y − x · y max(x, y)

x ⇒ y
if x ≤ y then 1

else 1− x + y

if x ≤ y then 1

else y

if x ≤ y then 1

else y/x
max(1− x, y)

Note: for Lukasiewicz Logic and Zadeh, x ⇒ y ≡ ¬x ∨ y

34

!

"

#

$

Fuzzy DLs Basics

• In classical DLs, a concept C is interpreted by an interpretation I as a set
of individuals

• In fuzzy DLs, a concept C is interpreted by I as a fuzzy set of individuals

• Each individual is instance of a concept to a degree in [0, 1]

• Each pair of individuals is instance of a role to a degree in [0, 1]

35

!

"

#

$

Fuzzy ALC concepts

Interpretation:

I = ∆I

CI : ∆I → [0, 1]

RI : ∆I ×∆I → [0, 1]

t = t-norm

s = s-norm

n = negation

i = implication

Concepts:

Syntax Semantics

C, D −→ " | "I(x) = 1

⊥ | ⊥I(x) = 0

A | AI(x) ∈ [0, 1]

C $D | (C1 $ C2)
I(x) = t(C1

I(x), C2
I(x))

C %D | (C1 % C2)
I(x) = s(C1

I(x), C2
I(x))

¬C | (¬C)I(x) = n(CI(x))

∃R.C | (∃R.C)I(x) = supy∈∆I t(RI(x, y), CI(y))

∀R.C (∀R.C)I(u) = infy∈∆I i(RI(x, y), CI(y)}

Assertions: 〈a:C, n〉, I |= 〈a:C, n〉 iff CI(aI) ≥ n (similarly for roles)

• individual a is instance of concept C at least to degree n, n ∈ [0, 1] ∩ Q
Inclusion axioms: C (D,

• I |= C (D iff ∀x ∈ ∆I .CI(x) ≤ DI(x), (alternative, ∀x ∈ ∆I .i(CI(x), DI(x)) = 1)

36

!

"

#

$

Basic Inference Problems

Consistency: Check if knowledge is meaningful

• Is K consistent?

Subsumption: structure knowledge, compute taxonomy

• K |= C - D ?

Equivalence: check if two fuzzy concepts are the same

• K |= C = D ?

Graded instantiation: Check if individual a instance of class C to degree at least n

• K |= 〈a:C, n〉 ?

BTVB: Best Truth Value Bound problem

• glb(K, a:C) = sup{n | K |= 〈a:C, n〉} ?

Retrieval: Rank set of individuals that instantiate C w.r.t. best truth value bound

• Rank the set R(K, C) = {〈a, glb(K, a:C)〉}

37

!

"

#

$

Some Notes on . . .

• Value restrictions:

– In classical DLs, ∀R.C ≡ ¬∃R.¬C

– The same is not true, in general, in fuzzy DLs (depends on the operators’

semantics, not true in Gödel logic).

∀hasParent.Human ,≡ ¬∃hasParent.¬Human ??

• Models:

– In classical DLs - % ¬(∀R.A) . (¬∃R.¬A) has no classical model

– In Gödel logic it has no finite model, but has an infinite model

• The choice of the appropriate semantics of the logical connectives is important.

– Should have reasonable logical properties

– Certainly it must have efficient algorithms solving basic inference problems

• Lukasiewicz Logic seems the best compromise, though Zadeh semantics has

been considered historically in DLs (Zadeh semantics is not considered by fuzzy

logicians)

38

!

"

#

$

Towards fuzzy OWL Lite and OWL DL

• Recall that OWL Lite and OWL DL relate to SHIF(D) and SHOIN (D),
respectively

• We need to extend the semantics of fuzzy ALC to fuzzy
SHOIN (D) = ALCHOINR+(D)

• Additionally, we add modifiers (e.g., very)

• Additionally, we add concrete fuzzy concepts (e.g., Young)

39

!

"

#

$

Concrete fuzzy concepts

• E.g., Small, Young, High, etc. with explicit membership function

• Use the idea of concrete domains:

– D = 〈∆D,ΦD〉
– ∆D is an interpretation domain

– ΦD is the set of concrete fuzzy domain predicates d with a predefined
arity n = 1, 2 and fixed interpretation dD : ∆n

D → [0, 1]

– For instance,

Minor = Person & ∃hasAge.≤18

YoungPerson = Person & ∃hasAge.Young

40

!

"

#

$

Modifiers

• Very, moreOrLess, slightly, etc.

• Apply to fuzzy sets to change their membership function

– very(x) = x2

– slightly(x) =
√

x

• For instance,

SportsCar = Car & ∃speed.very(High)

41

!

"

#

$

Number Restrictions and Transitive roles

• The semantics of the concept (≥ n S)

(≥ n R)I(x) = sup{y1,...,yn}⊆∆I
∧n

i=1 RI(x, yi)

• Is the result of viewing (≥ n R) as the open first order formula

∃y1, . . . , yn.
n∧

i=1

R(x, yi) ∧
∧

1≤i<j≤n

yi ,= yj .

• The semantics of the concept (≤ n R)

(≤ n R)I(x) = ¬(≥ n + 1 R)I(x)

• Note: (≥ 1 R) ≡ ∃R.-

• For transitive roles R we impose: for all x, y ∈ ∆I

RI(x, y) ≥ sup
z∈∆I

min(RI(x, z), RI(z, y))

42

!

"

#

$

Reasoning

• For full fuzzy SHOIN (D) or SHIF(D): does not exists yet

• Exists for fuzzy ALC(D) + modifiers + fuzzy concrete concepts

– Under Lukasiewicz semantics

– Under “Zadeh semantics” without GCI

• Exists for SHIN and Zadeh semantics (classical blocking methods apply
similarly in the fuzzy variant)

• On the way for GCI (both for Lukasiewicz Logic and Zadeh semantics)

43

!

"

#

$

Basic decision algorithm

• There are:

– Translations of fuzzy DLs to classical DLs (not addressed here)

– Tableau algorithms similar to classical DL tableaux

• Most problems can be reduced to consistency check, e.g.

– Assertions are extended to 〈a:C ≥ n〉, 〈a:C ≤ n〉, 〈a:C > n〉 and 〈a:C < n〉

– K |= 〈a:C, n〉 iff K ∪ {〈a:C < n〉} not consistent

∗ All models of K do not satisfy 〈a:C < n〉, i.e. do satisfy 〈a:C ≥ n〉

• Let’s see a tableaux algorithm for consistency check, where

t(x, y) = min(x, y)

s(x, y) = max(x, y)

n(x) = 1 − x

i(x, y) = s(n(x), y) = max(1 − x, y)

44

!

"

#

$

Tableaux checking consistency of an ALC KB

• Works on a tree forest (semantics through viewing tree as an ABox)

– Nodes represent elements of ∆I , labelled with sub-concepts of C and their weights

– Edges represent role-successorships between elements of ∆I and their weights

• Works on concepts in negation normal form: push negation inside using de Morgan’

laws and

¬(∃R.C) $→ ∀R.¬C

¬(∀R.C) $→ ∃R.¬C

• It is initialised with a tree forest consisting of root nodes a, for all individuals

appearing in the KB:

– If 〈a:C "# n〉 ∈ K then 〈C, "#, n〉 ∈ L(a)

– If 〈(a, b):R "# n〉 ∈ K then 〈〈a, b〉, "#, n〉 ∈ E(R)

• A tree forest T contains a clash if for a tree T in the forest there is a node x in T ,

containing a conjugated pair {〈A, ", n〉, 〈C, #, m〉} ⊆ L(x), e.g. 〈A,≥, 0.6〉, 〈A, <, 0.3〉

• Returns “K is consistent” if rules can be applied s.t. they yield a clash-free, complete

(no more rules apply) tree forest

45

!

"

#

$

ALC Tableau rules (excerpt)

x • {〈C1 & C2,≥, n〉, . . .} −→& x • {〈C1 & C2,≥, n〉, 〈C1,≥, n〉, 〈C2,≥, n〉, . . .}

x • {〈C1 (C2,≥, n〉, . . .} −→' x • {〈C1 (C2,≥, n〉, 〈C,≥, n〉, . . .}
for C ∈ {C1, C2}

x • {〈∃R.C,≥, n〉, . . .} −→∃ x • {〈∃R.C,≥, n〉, . . .}
〈R,≥, n〉 ↓

y • {〈C,≥, n〉}

x • {〈∀R.C,≥, n〉, . . .}
〈R,≥, m〉 ↓ (m > 1− n)

y • {. . .}

−→∀ x • {〈∀R.C,≥, n〉, . . .}
〈R,≥, m〉 ↓

y • {. . . , 〈C,≥, n〉}
...

...
...

46

!

"

#

$

Soundness and Completeness

Theorem 1 Let K be an ALC KB and F obtained by applying the tableau rules to K. Then

1. The rule application terminates,

2. If F is clash-free and complete, then F defines a (canonical) (tree forest) model for K, and

3. If K has a model I, then the rules can be applied such that they yield a clash-free and

complete forest F .

Corollary 1

1. The tableau algorithm is a PSPACE (using depth-first search) decision procedure for
consistency of ALC KBs.

2. ALC individuals have the tree-model property

The tableau can be modified to a decision procedure for

• SHIN (≡ ALCHINR+)

• TBox with acyclic concept definitions using lazy unfolding (unfolding on
demand)

• For general inclusion axioms C * D (on the way)

47

!

"

#

$

Problem with fuzzy tableau

• Usual fuzzy tableaux calculus does not work anymore with

– modifiers and concrete fuzzy concepts

– Lukasiewicz Logic

• Usual fuzzy tableaux calculus does not solve the BTVB problem

• New algorithm uses bounded Mixed Integer Programming oracle, as for
Many Valued Logics

– Recall: the general MILP problem is to find

x̄ ∈ Qk, ȳ ∈ Zm

f(x̄, ȳ) = min{f(x,y) : Ax + By ≥ h}
A, B integer matrixes

48

!

"

#

$

Requirements

• Works for usual fuzzy DL semantics (Zadeh semantics) and Lukasiewicz logic

• Modifiers are definable as linear in-equations over Q, Z (e.g., linear hedges), for

instance, linear hedges, lm(a, b), e.g. very = lm(0.7, 0.49)

• Fuzzy concrete concepts are definable as linear in-equations over Q, Z (e.g., crisp,

triangular, trapezoidal, left shoulder and right shoulder membership functions)

lm(a,b) cr(a,b) tri(a,b,c)

trz(a,b,c,d) ls(a,b) rs(a,b,c)

49

!

"

#

$

• Example:

Minor = Person & ∃hasAge. ≤18

YoungPerson = Person & ∃hasAge.Young
Young = ls(10, 30)

≤18 = cr(0, 18)

• Then

glb(K, a:C) = min{x | K ∪ {〈a:C ≤ x〉 satisfiable}
glb(K, C * D) = min{x | K ∪ {〈a:C & ¬D ≥ 1 − x〉 satisfiable}

– Apply tableaux calculus (without non-deterministic branches), then
use bounded Mixed Integer Programming oracle

50

!

"

#

$

ALC Tableau rules (excerpt)
x • {〈C1 $ C2,≥, l〉, . . .} −→# x • {〈C1 $ C2,≥, l〉, 〈C1,≥, l〉, 〈C2,≥, l〉, . . .}
x • {〈C1 % C2,≥, l〉, . . .} −→$ x • {〈C1 % C2,≥, l〉, 〈C1,≥, x1〉, 〈C2,≥, x2〉,

x1 + x2 = l, x1 ≤ y, x2 ≤ 1− y,

xi ∈ [0, 1], y ∈ {0, 1}, . . .}
x • {〈∃R.C,≥, l〉, . . .} −→∃ x • {〈∃R.C,≥, l〉, . . .}

〈R,≥, l〉 ↓
y • {〈C,≥, l〉}

x • {〈∀R.C,≥, l1〉, . . .}
〈R,≥, l2〉 ↓

y • {. . .}

−→∀ x • {〈∀R.C,≥, l1〉, . . .}
〈R,≥, l2〉 ↓

y • {. . . , 〈C,≥, x〉
x + y ≥ l1, x ≤ y, l1 + l2 ≤ 2− y,

x ∈ [0, 1], y ∈ {0, 1}}
.
.
.

.

.

.
.
.
.

x • {A (C, 〈A,≥, l〉, . . .} −→'1 x • {A (C, 〈C,≥, l〉, . . .}
x • {C (A, 〈A,≤, l〉, . . .} −→'2 x • {C (A, 〈C,≤, l〉, . . .}
.
.
.

.

.

.
.
.
.

51

!

"

#

$

Example

• Suppose

K =






A $ B (C

〈a:A ≥ 0.3〉
〈a:B ≥ 0.4〉

Query : = glb(K, a:C) = min{x | K ∪ {〈a:C ≤ x〉 satisfiable}

Step Tree

1. a • {〈A,≥, 0.3〉, 〈B,≥, 0.4〉, 〈C,≤, x〉} (Hypothesis)

2. ∪{〈A $B,≤, x〉} (→'2)

3. ∪{〈A,≤, x1〉, 〈B,≤, x2〉} (→#≤)

∪{x = x1 + x2 − 1, 1− y ≤ x1, y ≤ x2}
∪{xi ∈ [0, 1], y ∈ {0, 1}}

4. find min{x | 〈a:A ≥ 0.3〉, 〈a:B ≥ 0.4〉, (MILP Oracle)

〈a:C ≤ x〉, 〈a:A ≤ x1〉, 〈a:B ≤ x2〉,
x = x1 + x2 − 1, 1− y ≤ x1, y ≤ x2,

xi ∈ [0, 1], y ∈ {0, 1}}
5. MILP oracle: x = 0.3

52

!

"

#

$

Implementation issues

• Several options exists:

– Try to map fuzzy DLs to classical DLs
∗ but, does not work with modifiers and concrete fuzzy concepts

– Try to map fuzzy DLs to some fuzzy logic programming framework
∗ A lot of work exists about mappings among classical DLs and LPs
∗ But, needs a theorem prover for fuzzy LPs (see next part)
∗ To be used then e.g. in the axiomatic approach to fuzzy DLPs

– Build an ad-hoc theorem prover for fuzzy DLs, using e.g., MILP
∗ To be used then separately e.g. in the DL-log approach to fuzzy

DLPs

• A theorem prover for fuzzy ALC + linear hedges + concrete fuzzy
concepts, using MILP, has been implemented

53

!

"

#

$

Future Work on fuzzy DLs

• Research directions:

– Computational complexity of the fuzzy DLs family

– Design of efficient reasoning algorithms

– Combining fuzzy DLs with Logic Programming

– Language extensions: e.g. fuzzy quantifiers

TopCustomer = Customer & (Usually)buys.ExpensiveItem

ExpensiveItem = Item & ∃price.High

– Developing a system

– . . .

54

!

"

#

$

Fuzzy LPs Basics

• Many Logic Programming (LP) frameworks have been proposed to manage

uncertain and imprecise information. They differ in:

– The underlying notion of uncertainty and imprecision: probability,

possibility, many-valued, fuzzy sets

– How values, associated to rules and facts, are managed

• We consider fuzzy LPs, where

– Truth space is [0, 1]Q

– Interpretation is a mapping I : BP → [0, 1]Q

– Generalized LP rules are of the form

f(A1, . . . , An) ⇒ A

∗ A and Ai atoms and f total, monotone, finite-time computable function

f : [0, 1]nQ → [0, 1]Q
∗ Meaning of rules: take the truth-values of A1, ...An, combine them using

the function f , and assign the result to A

55

!

"

#

$

Example

min(Location(hotel, hotelLocation),

Distance(hotelLocation, buisinessLocation, distance),

Close(distance)

)

=⇒ NearTo(businessLocation, hotel)

where Close(x) = max(0, 1− x/1000).

56

!

"

#

$

Semantics of fuzzy LPs

• Model of a LP: I |= P iff I |= r, for all r ∈ P∗, where

– I |= f(A1, . . . , An) ⇒ A iff f(I(A1), . . . , I(An)) ≤ I(A)

• Least model exists and is least fixed-point of

TP(I)(A) = I(ϕ)

for all ϕ ⇒ A ∈ P∗

• Note: Extension to fuzzy Normal Logic Programs exists, as well as a
query answering procedure. However, we will not deal with that here.

57

!

"

#

$

Query answering for fuzzy LPs

• Given a logic program P, given a query atom A,

– compute the minimal model I of P (bottom-up, using TP)

– answer with I(A)

• Problems:

– Least model can be very huge

– You do not need to compute the whole least model I of P to answer
with I(A), e.g.
∗ P = {B ⇒ A, 1 ⇒ B} ∪ P ′, where A does not appear in P ′

58

!

"

#

$

A general top-down query procedure for fuzzy LPs

• Idea: use theory of fixed-point computation of equational systems over [0, 1]Q

• Assign a variable xi to an atom Ai ∈ BP

• Map a rule f(A1, . . . , An) ⇒ A ∈ P∗ into the equation xA = f(xA1 , . . . , xAn)

• A LP P is thus mapped into the equational system





x1 = f1(x11 , . . . , x1a1
)

...

xn = fn(xn1 , . . . , xnan
)

• fi is monotone and, thus, the system has least fixed-point, which is the limit of

y0 = 0

yi+1 = f(yi) .

where f = 〈f1, . . . , fn〉 and f(x) = 〈f1(x1), . . . , fn(xn)〉

• The least-fixed point is the least model of P

• Consequence: If top-down procedure exists for equational systems then it works for fuzzy

LPs too!

59

!

"

#

$

Procedure Solve(S,Q)

Input: monotonic system S = 〈L, V, f〉, where Q ⊆ V is the set of query variables;

Output: A set B ⊆ V , with Q ⊆ B such that the mapping v equals lfp(f) on B.

1. A : = Q, dg : = Q, in : = ∅, for all x ∈ V do v(x) = 0, exp(x) = 0

2. while A 9= ∅ do

3. select xi ∈ A, A : = A \ {xi}, dg : = dg ∪ s(xi)

4. r : = fi(v(xi1), ..., v(xiai
))

5. if r ; v(xi) then v(xi) : = r, A : = A ∪ (p(xi) ∩ dg) fi

6. if not exp(xi) then exp(xi) = 1, A : = A ∪ (s(xi) \ in), in : = in ∪ s(xi) fi

od

60

!

"

#

$

• Set of facts 0.7⇒ Experience(john), 0.5⇒ Risk(john), 0.8⇒ Sport car(john)

• Set of rules, which after grounding are:

Experience(john) ∧ (0.5 · Risk(john)) ⇒ Good driver(john)

0.8 · Young(john) ⇒ Risk(john)

0.8 · Sport car(john) ⇒ Risk(john)

Experience(john) ∧ (0.5 · Good driver(john)) ⇒ Risk(john)

1. A : = {xR(j)}, xi : = xR(j), A : = ∅, dg : = {xR(j), xY(j), xS(j), xE(j), xG(j)}, r : = 0.5, v(xR(j)) : = 0.5,

A : = {xG(j)}, exp(xR(j)) : = 1, A : = {xY(j), xS(j), xE(j), xG(j)}, in : = {xY(j), xS(j), xE(j), xG(j)}
2. xi : = xY(j), A : = {xS(j), xE(j), xG(j)}, r : = 0, exp(xY(j)) : = 1

3. xi : = xS(j), A : = {xE(j), xG(j)}, r : = 0.8, v(xS(j)) : = 0.8, A : = {xE(j), xG(j), xR(j)}, exp(xS(j)) : = 1

4. xi : = xE(j), A : = {xG(j), xR(j)}, r : = 0.7, v(xE(j)) : = 0.7, exp(xE(j)) : = 1

5. xi : = xG(j), A : = {xR(j)}, r : = 0.25, v(xG(j)) : = 0.25, exp(xG(j)) : = 1,

in : = {xY(j), xS(j), xE(j), xG(j), xR(j)}
6. xi : = xR(j), A : = ∅, r : = 0.64, v(xR(j)) : = 0.64, A : = {xG(j)}
7. xi : = xG(j), A : = ∅, r : = 0.32, v(xG(j)) : = 0.32, A : = {xR(j)}
8. xi : = xG(j), A : = ∅, r : = 0.64

10. stop. return v (in particular, v(xR(j)) = 0.64)

61

!

"

#

$

Future Work on fuzzy LPs

• Research directions:

– Developing a system for fuzzy LPs (i.e. implement the top-down

algorithm, e.g. use lparse for grounding)

– Mapping between fuzzy OWL Lite and fuzzy LPs (I guess they are in the

same complexity class)

∗ Problem: membership functions of concrete concepts are not

necessarily monotone

∗ A MILP oracle in fuzzy LPs may be needed

– More general equations: from x = f(x1, ..., xn) to e.g.

xi1 ∨ . . . ∨ xik = f(x1, ..., xn)

to accommodate disjunctive fuzzy LPs

– Mapping between fuzzy OWL DL and fuzzy disjunctive LPs

62

!

"

#

$

Fuzzy DLPs Basics

• Combine fuzzy DLs with fuzzy LPs:

– DL atoms and roles may appear in rules

min(made by(x, y), 〈ChineseCarCompany〉(y)), prize(x, z) ⇒ LowCarPrize(z)

LowCarPrize(z) = ls(5.000, 15.000)

ChineseCarCompany % ∃has location.China

• Knowledge Base is a pair KB = 〈P,Σ〉, where

– P is a fuzzy logic program

– Σ is a fuzzy DL knowledge base (set of assertions and inclusion axioms)

63

!

"

#

$

Fuzzy DLPs Semantics

• Semantics: two main approaches

1. Axiomatic approach: fuzzy DL atoms and roles are managed
uniformely
– I is a model of KB = 〈P,Σ〉 iff I |= P and I |= Σ

2. DL-log approach: fuzzy DL atoms and roles are procedural
attachments (calls to a fuzzy DL theorem prover)
– I is a model of KB = 〈P,Σ〉 iff IΣ |= P
– IΣ(A) = I(A) for all ground non-DL atoms A

– IΣ(〈A〉(a)) = glb(Σ, a:A) for all ground DL atoms 〈A〉(a)
– IΣ(〈R〉(a, b)) = glb(Σ, (a, b):R) for all ground DL roles 〈R〉(a, b)

• DL-log has the minimal model property of fuzzy LPs and a fixed-point
characterization: TP(I)(A) = IΣ(ϕ), for ϕ ⇒ A ∈ P∗

64

!

"

#

$

A top-down procedure for the DL-log approach

• Combine Solve(S, Q) with a theorem prover for fuzzy DLs

– Modify Step 1. of algorithm Solve(S, Q)
∗ for all xij DL-atoms 〈A〉(a) (similarly for roles)

· compute x̄ij = glb(K, a:A)
· set v(xij) = x̄ij , instead of v(xij) = 0

• Essentially, for all DL-atoms 〈A〉(a) we compute off-line glb(K, a:A) and
add then the rule A(a) ← glb(K, a:A) to P

• A solution for the axiomatic approach is not known yet

65

!

"

#

$

Conclusions

• Fuzzy DLs, fuzzy LPs and fuzzy DLPs allow to deal with imprecise
concepts

– Formulae have a degree of truth

– Explicit membership functions are allowed

• We shown some applications of these languages and reasoning
procedures

66

