Talk at Karlsruhe, Germany, November 25^{th} , 2005

Fuzzy Description Logics,

Fuzzy Logic Programming,

their Combination (and the Semantic Web)

Umberto Straccia

I.S.T.I. - C.N.R. Pisa, Italy straccia@isti.cnr.it

"Calla is a very large, long white flower on thick stalks"

Outline

- Preliminaries: short recall on classical
 - Description Logics (DLs)
 - Logic Programs (LPs)
 - Description Logic Programs (DLPs)
- Semantic Web and Ontologies
- Fuzzy
 - Description Logics
 - Logic Programs
 - Description Logic Programs
- Conclusions

Basics of
Description Logics
Logic Programs
Description Logic Programs

DLs Basics

- Concept names are equivalent to unary predicates
 - In general, concepts equiv to formulae with one free variable
- Role names are equivalent to binary predicates
 - In general, roles equiv to formulae with two free variables
- Individual names are equivalent to constants
- Operators restricted so that:
 - Language is decidable and, if possible, of low complexity
 - No need for explicit use of variables
 - * Restricted form of \exists and \forall
 - Features such as counting can be succinctly expressed

The DL Family

- A given DL is defined by set of concept and role forming operators
- Basic language: $\mathcal{ALC}(A$ ttributive \mathcal{L} anguage with \mathcal{C} omplement)

Syntax			Example
$C, D \rightarrow$	T	(top concept)	
		(bottom concept)	
	$A \mid$	(atomic concept)	Human
	$C\sqcap D$	(concept conjunction)	Human □ Male
	$C \sqcup D \mid$	(concept disjunction)	$\texttt{Nice} \sqcap \texttt{Rich}$
	$\neg C \mid$	(concept negation)	¬Meat
	$\exists R.C \mid$	(existential quantification)	∃has_child.Blond
	$\forall R.C$	(universal quantification)	∀has_child.Human
$C \sqsubseteq D$		(inclusion axiom)	$ ext{Happy_Father} \sqsubseteq ext{Man} \sqcap \exists ext{has_child.Female}$
a:C		(assertion)	John:Happy_Father

DLs Semantics

- Interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is the domain (a non-empty set), $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
 - Concept (class) name A into a function $A^{\mathcal{I}}: \Delta^{\mathcal{I}} \to \{0, 1\}$
 - Role (property) name R into a function $R^{\mathcal{I}}: \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to \{0, 1\}$
 - Individual name a into an element of $\Delta^{\mathcal{I}}$
- \mathcal{ALC} mapping to FOL:

Note on DL naming

$$\mathcal{AL}$$
: $C, D \longrightarrow \top \mid \bot \mid A \mid C \sqcap D \mid \neg A \mid \exists R. \top \mid \forall R. C$

- C: Concept negation, $\neg C$. Thus, $\mathcal{ALC} = \mathcal{AL} + \mathcal{C}$
- \mathcal{S} : Used for \mathcal{ALC} with transitive roles \mathcal{R}_+
- \mathcal{U} : Concept disjunction, $C_1 \sqcup C_2$
- \mathcal{E} : Existential quantification, $\exists R.C$
- \mathcal{H} : Role inclusion axioms, $R_1 \sqsubseteq R_2$, e.g. is_component_of \sqsubseteq is_part_of
- \mathcal{N} : Number restrictions, $(\geq n \ R)$ and $(\leq n \ R)$, e.g. $(\geq 3 \ has_Child)$ (has at least 3 children)
- Q: Qualified number restrictions, $(\geq n \ R.C)$ and $(\leq n \ R.C)$, e.g. $(\leq 2 \ has_Child.Adult)$ (has at most 2 adult children)
- \mathcal{O} : Nominals (singleton class), $\{a\}$, e.g. $\exists has_child.\{mary\}$. Note: a:C equiv to $\{a\} \sqsubseteq C$ and (a,b):R equiv to $\{a\} \sqsubseteq \exists R.\{b\}$
- \mathcal{I} : Inverse role, R^- , e.g.
- \mathcal{F} : Functional role, f

For instance,

$$\begin{array}{rcl} \mathcal{SHIF} & = & \mathcal{S} + \mathcal{H} + \mathcal{I} + \mathcal{F} = \mathcal{ALCR}_{+}\mathcal{HIF} \\ \\ \mathcal{SHOIN} & = & \mathcal{S} + \mathcal{H} + \mathcal{O} + \mathcal{I} + \mathcal{N} = \mathcal{ALCR}_{+}\mathcal{HOIN} \end{array}$$

Concrete domains

- Concrete domains: integers, strings, ...
- Clean separation between object classes and concrete domains
 - $D = \langle \Delta_{D}, \Phi_{D} \rangle$
 - $-\Delta_{D}$ is an interpretation domain
 - Φ_D is the set of concrete domain predicates d with a predefined arity n and fixed interpretation $d^D : \Delta_D^n \to \{0,1\}$
 - Concrete properties: $R^{\mathcal{I}}: \Delta^{\mathcal{I}} \times \Delta_D \to \{0,1\}$, e.g., (tim, 14):hasAge, (sf, "SoftComputing"):hasAcronym
- Philosophical reasons: concrete domains structured by built-in predicates
- Practical reasons:
 - language remains simple and compact
 - Semantic integrity of language not compromised
 - Implementability not compromised can use hybrid reasoner
 - * Only need sound and complete decision procedure for $d_1^{\mathcal{I}} \wedge \ldots \wedge d_n^{\mathcal{I}}$, where d_i is a (posssibly negated) concrete property
- Notation: (D). E.g., $\mathcal{ALC}(D)$ is \mathcal{ALC} + concrete domains

LPs Basics (for ease, without default negation)

- Predicates are *n*-ary
- Terms are variables or constants
- Rules are of the form

$$B_1(\mathbf{x_1}) \wedge \ldots \wedge B_n(\mathbf{x_n}) \Rightarrow P(\mathbf{x})$$

For instance,

$$has_parent(x, y) \land Male(y) \Rightarrow has_father(x, y)$$

• Facts are rules with empty body For instance,

has_parent(mary, jo)

LPs Semantics: FOL semantics

- \mathcal{P}^* is constructed as follows:
 - 1. set \mathcal{P}^* to the set of all ground instantiations of rules in \mathcal{P} ;
 - 2. if atom A is not head of any rule in \mathcal{P}^* , then add $0 \Rightarrow A$ to \mathcal{P}^* ;
 - 3. replace several rules in \mathcal{P}^* having same head

$$\begin{array}{c}
\varphi_1 \Rightarrow A \\
\varphi_2 \Rightarrow A \\
\vdots \\
\varphi_n \Rightarrow A
\end{array}
\quad \text{with } \varphi_1 \lor \varphi_2 \lor \dots \lor \varphi_n \Rightarrow A .$$

- Note: in \mathcal{P}^* each atom $A \in B_{\mathcal{P}}$ is head of exactly one rule
- Herbrand Base of \mathcal{P} is the set $B_{\mathcal{P}}$ of ground atoms
- Interpretation is a function $I: B_{\mathcal{P}} \to \{0, 1\}$.
- Model $I \models \mathcal{P}$ iff for all $r \in \mathcal{P}^*$ $I \models r$, where $I \models \varphi \Rightarrow A$ iff $I(\varphi) \leq I(A)$
- Least model exists and is least fixed-point of $T_{\mathcal{P}}(I)(A) = I(\varphi)$, for all $\varphi \Rightarrow A \in \mathcal{P}^*$

DLPs Basics

- Combine DLs with LPs:
 - DL atoms and roles may appear in rules

```
{\tt made\_by}(x,y) \land \langle {\tt Chinese\_Company} \rangle (y) \Rightarrow {\tt prize}(x,{\tt low}) {\tt Chinese\_Company} \sqsubseteq \exists {\tt has\_location.China}
```

- Knowledge Base is a pair $KB = \langle \mathcal{P}, \Sigma \rangle$, where
 - $-\mathcal{P}$ is a logic program
 - $-\Sigma$ is a DL knowledge base (set of assertions and inclusion axioms)

DLPs Semantics

- Semantics: two main approaches
 - 1. Axiomatic approach: DL atoms and roles are managed uniformely
 - -I is a model of $KB = \langle \mathcal{P}, \Sigma \rangle$ iff $I \models \mathcal{P}$ and $I \models \Sigma$
 - 2. DL-log approach: DL atoms and roles are procedural attachments (calls to a DL theorem prover)
 - I is a model of $KB = \langle \mathcal{P}, \Sigma \rangle$ iff $I^{\Sigma} \models \mathcal{P}$
 - I^{Σ} is a model of a ground non-DL atom $A \in B_{\mathcal{P}}$ iff I(A) = 1
 - $-I^{\Sigma}$ is a model of a ground DL atom $\langle A \rangle(a)$ iff $\Sigma \models a:A$
 - $-I^{\Sigma}$ is a model of a ground DL role $\langle R \rangle(a,b)$ iff $\Sigma \models (a,b):R$
- Axiomatic approach: easy to get undecidability results (e.g. recursive rules $+ \forall$)
- DL-log entailment \subseteq Axiomatic entailment
- Axiomatic approach does not enjoy the minimal model property of LPs
- DL-log has the minimal model property of LPs and a fixed-point characterization: $T_{\mathcal{P}}(I)(A) = I^{\Sigma}(\varphi)$, for all $\varphi \Rightarrow A \in \mathcal{P}^*$

Basics of the Semantic Web and Ontologies

The Semantic Web Vision and DLs

- The WWW as we know it now
 - 1st generation web mostly handwritten HTML pages
 - 2nd generation (current) web often machine generated/active
 - Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes
 - To be achieved via semantic markup
 - Metadata annotations that describe content/function

Ontologies

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of properties of instances of each concept
- Ontologies can be used, e.g.
 - To facilitate agent-agent communication in e-commerce
 - In semantic based search
 - To provide richer service descriptions that can be more flexibly interpreted by intelligent agents

Example Ontology

- Vocabulary and meaning (definitions)
 - Elephant is a concept whose members are a kind of animal
 - Herbivore is a concept whose members are exactly those animals who eat only plants or parts of plants
 - Adult_Elephant is a concept whose members are exactly those elephants whose age is greater than 20 years
- Background knowledge/constraints on the domain (general axioms)
 - Adult_Elephants weigh at least 2,000 kg
 - All Elephants are either African_Elephants or Indian_Elephants
 - No individual can be both a Herbivore and a Carnivore

Ontology Description Languages

- Should be sufficiently expressive to capture most useful aspects of domain knowledge representation
- Reasoning in it should be decidable and efficient
- Many different languages has been proposed: RDF, RDFS, OIL, DAML+OIL
- OWL (Ontology Web Language) is the current emerging language. There are three species of OWL
 - OWL full is union of OWL syntax and RDF (but, undecidable)
 - OWL DL restricted to FOL fragment (reasoning problem in NEXPTIME)
 - * based on \mathcal{SHIQ} Description Logic $(\mathcal{ALCHIQR}_{+})$
 - OWL Lite is easier to implement subset of OWL DL (reasoning problem in EXPTIME)
 - * based on \mathcal{SHIF} Description Logic $(\mathcal{ALCHIFR}_+)$
- SWRL, a Semantic Web Rule Language combines OWL and RuleML

OWL DL

Abstract Syntax	DL Syntax	Example
Descriptions (C)		
A (URI reference)	A	Conference
owl:Thing	Т	
owl:Nothing	上	
$intersectionOf(C_1 \ C_2 \ldots)$	$C_1 \sqcap C_2$	Reference □ Journal
${\tt unionOf}(C_1 \ C_2 \ldots)$	$C_1 \sqcup C_2$	Organization \sqcup Institution
$\mathtt{complementOf}(C)$	$\neg C$	eg MasterThesis
$\mathtt{oneOf}(o_1 \ldots)$	$\{o_1,\ldots\}$	{"WISE","ISWC",}
$\verb restriction (R \verb someValuesFrom (C)) $	$\exists R.C$	$\exists \mathtt{parts.InCollection}$
${\tt restriction}(R \; {\tt allValuesFrom}(C))$	$\forall R.C$	oralldate.Date
${\tt restriction}(R \; {\tt hasValue}(o))$	R:o	date : 2005
${\tt restriction}(R \; {\tt minCardinality}(n))$	$(\geq n R)$	$\geqslant 1$ location
${\tt restriction}(R \; {\tt maxCardinality}(n))$	$(\leq n R)$	$\leqslant 1$ publisher
$\verb restriction(U someValuesFrom(D)) \\$	$\exists U.D$	∃issue.integer
${\tt restriction}(U \; {\tt allValuesFrom}(D))$	$\forall U.D$	$\forall { t name.string}$
$\mathtt{restriction}(U \ \mathtt{hasValue}(v))$	U:v	series : "LNCS"
${\tt restriction}(U \; {\tt minCardinality}(n))$	$(\geq n \ U)$	$\geqslant 1$ title
$\verb"restriction"(U \texttt{ maxCardinality}(n))$	$(\leq n \ U)$	$\leqslant 1$ author

Abstract Syntax	DL Syntax	Example
Axioms		
$Class(A partial C_1 \dots C_n)$	$A \sqsubseteq C_1 \sqcap \ldots \sqcap C_n$	Human \sqsubseteq Animal \sqcap Biped
$\operatorname{\mathtt{Class}}(A \ \operatorname{\mathtt{complete}} \ C_1 \dots C_n)$	$A = C_1 \sqcap \ldots \sqcap C_n$	$ exttt{Man} = exttt{Human} \sqcap exttt{Male}$
$\texttt{EnumeratedClass}(A \ o_1 \dots o_n)$	$A = \{o_1\} \sqcup \ldots \sqcup \{o_n\}$	$ exttt{RGB} = \{ exttt{r}\} \sqcup \{ exttt{g}\} \sqcup \{ exttt{b}\}$
${ t SubClassOf}(C_1C_2)$	$C_1 \sqsubseteq C_2$	
${\tt EquivalentClasses}(C_1 \dots C_n)$	$C_1 = \ldots = C_n$	
${\tt DisjointClasses}(C_1\dots C_n)$	$C_i \sqcap C_j = \perp, i \neq j$	$\texttt{Male} \sqsubseteq \neg \texttt{Female}$
ObjectProperty $(R \text{ super } (R_1) \dots \text{ super } (R_n))$	$R \sqsubseteq R_i$	HasDaughter \sqsubseteq hasChild
${\tt domain}(C_1) \dots {\tt domain}(C_n)$	$(\geq 1 R) \sqsubseteq C_i$	$(\geq 1 \; \mathtt{hasChild}) \sqsubseteq \mathtt{Human}$
$\mathtt{range}(C_1) \ldots \mathtt{range}(C_n)$	$\top \sqsubseteq \forall R.D_i$	$ op \sqsubseteq orall$ hasChild.Human
$[\mathtt{inverseof}(R_0)]$	$R = R_0^-$	${ t hasChild} = { t hasParent}^-$
[symmetric]	$R = R^-$	$\mathtt{similar} = \mathtt{similar}^-$
[functional]	$\top \sqsubseteq (\leq 1 R)$	$ op \sqsubseteq (\leq 1 \; \mathtt{hasMother})$
[Inversefunctional]	$\top \sqsubseteq (\leq 1 R^-)$	
[Transitive]	Tr(R)	$Tr({ t ancestor})$
${\tt SubPropertyOf}(R_1R_2)$	$R_1 \sqsubseteq R_2$	
${\tt EquivalentProperties}(R_1 \dots R_n)$	$R_1 = \ldots = R_n$	$\mathtt{cost} = \mathtt{price}$
${\tt AnnotationProperty}(S)$		

Abstract Syntax	DL Syntax	Example
DatatypeProperty $(U \text{ super } (U_1) \dots \text{ super } (U_n))$	$U \sqsubseteq U_i$	
${\tt domain}(C_1) \dots {\tt domain}(C_n)$	$(\geq 1 \ U) \sqsubseteq C_i$	$(\geq 1\;\mathtt{hasAge})\sqsubseteq\mathtt{Human}$
$\mathtt{range}(D_1) \ldots \mathtt{range}(D_n)$	$\top \sqsubseteq \forall U.D_i$	$ op \sqsubseteq orall$ hasAge.posInteger
[functional]	$\top \sqsubseteq (\leq 1 \ U)$	$ op \sqsubseteq (\leq 1 \; \mathtt{hasAge})$
${ t SubPropertyOf}(U_1U_2)$	$U_1 \sqsubseteq U_2$	$\texttt{hasName} \sqsubseteq \texttt{hasFirstName}$
EquivalentProperties $(U_1 \dots U_n)$	$U_1 = \ldots = U_n$	
Individuals		
$ ext{Individual}(o ext{ type } (C_1) \dots ext{ type } (C_n))$	$o:C_i$	tim:Human
$ exttt{value}(R_1o_1) \dots exttt{value}(R_no_n)$	$(o,o_i):R_i$	(tim, mary):hasChild
$ exttt{value}(U_1v_1) \dots exttt{value}(U_nv_n)$	$(o, v_1):U_i$	(tim, 14):hasAge
${ t SameIndividual}(o_1 \dots o_n)$	$o_1 = \ldots = o_n$	${ t president_Bush} = { t G.W.Bush}$
${\tt DifferentIndividuals}(o_1 \dots o_n)$	$o_i \neq o_j, i \neq j$	$\mathtt{john} \neq \mathtt{peter}$

XML representation of OWL statements

E.g., Person $\sqcap \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor)$:

```
<owl:Class>
  <owl:intersectionOf rdf:parseType=" collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasChild"/>
      <owl:allValuesFrom>
        <owl:unionOf rdf:parseType=" collection">
          <owl:Class rdf:about="#Doctor"/>
          <owl:Restriction>
            <owl:onProperty rdf:resource="#hasChild"/>
            <owl:someValuesFrom rdf:resource="#Doctor"/>
          </owl:Restriction>
        </owl:unionOf>
      </owl:allValuesFrom>
    </owl:Restriction>
  </owl:intersectionOf>
</owl:Class>
```

Fuzzy

Description Logics

Logic Programs

Description Logic Programs

Objective

- To extend classical DLs and LPs towards the representation of and reasoning with vague concepts
- To show some applications
- Development of practical reasoning algorithms

A clarification

- Uncertainty theory: statements rather than being either true or false, are true or false to some probability or possibility/necessity
 - E.g., "It is possible that it will rain tomorrow"
 - Usually we have a possible world semantics with a distribution over possible worlds:

$$W = \{I \text{ classical interpretation}\} \quad (I(\varphi) \in \{0, 1\})$$

 $\mu \colon W \to [0, 1] \quad (\mu(I) \in [0, 1])$

- Imprecision theory: statements are true to some degree which is taken from a truth space
 - E.g., "Chinese items are cheap"
 - Truth space: set of truth values L and an partial order \leq
 - Many-valued Interpretation: a function I mapping formulae into L, i.e. $I(\varphi) \in L$
 - Fuzzy Logic: L = [0, 1]
- Uncertainty and imprecision theory: "It is possible that it will be hot tomorrow"
- In this work we deal with imprecision and, thus, statements have a degree of truth.

Example (fuzzy DL-Lite, Current work)

Hotel \Box \exists hasLocation

Conference \Box \exists hasLocation

Hotel □ ¬Conference

 $\mathtt{Location}^{\mathcal{I}} \subseteq \mathtt{GISCoordinates}$

 $\mathtt{distance}^{\mathcal{I}} \quad : \quad \mathtt{GISCoord} \times \mathtt{GISCoord} \to \mathbb{N}$

 $distance(x, y) = \dots$

 $\mathtt{close}^{\mathcal{I}}$: $\mathbb{N} \to [0,1]$

 $close(x) = \max(0, 1 - \frac{x}{1000})$

hasLocation	hasLocation	distance
hl1	cl1	300
hl1	c12	500
hl2	cl1	750
hl2	c12	750
:		

HotelID	hasLocation	ConferenceID	hasLocation
h1	hl1	c1	cl1
h2	hl2	c2	c12
:	:		· ·

HotelID	closeness degree
h1	0.7
h2	0.25
:	:

"Find a hotel close to conference c1":

 $\texttt{Hotel}(h) \land \texttt{hasLocation}(h, hl) \land \texttt{Conference}(\texttt{c1}) \land \texttt{hasLocation}(\texttt{c1}, cl) \land \texttt{distance}(hl, cl, d) \land \texttt{close}(d) \Rightarrow \texttt{Query}(\texttt{c1}, h)$

Example (Logic-based information retrieval model)

Bird \sqsubseteq Animal

Dog
Animal

snoopy : Dog

woodstock : Bird

ImageRegion	Object ID	isAbout
01	snoopy	0.8
02	woodstock	0.7
:		

 ${\tt ImageRegion}(ir) \land {\tt isAbout}(ir,x) \land {\tt Animal}(x) \Rightarrow {\tt Query}(ir)$

Example (Graded Entailment)

Car	speed
audi_tt	243
mg	≤ 170
ferrari_enzo	≥ 350

 $\texttt{SportsCar} \quad = \quad \texttt{Car} \sqcap \exists \texttt{hasSpeed.very(High)}$

 $\mathcal{K} \models \langle \text{ferrari_enzo:SportsCar}, 1 \rangle$

 $\mathcal{K} \models \langle \mathtt{audi_tt:SportsCar}, 0.92 \rangle$

 $\mathcal{K} \models \langle \text{audi_tt:} \neg \text{SportsCar}, 0.72 \rangle$

Example (Graded Subsumption)

Minor = Person
$$\sqcap \exists$$
 has Age. \leq_{18}

 $YoungPerson = Person \sqcap \exists hasAge.Young$

$$\mathcal{K} \models \langle \mathtt{Minor} \sqsubseteq \mathtt{YoungPerson}, 0.2 \rangle$$

Note: without an explicit membership function of Young, this inference cannot be drawn

Example with fuzzy LPs (current work)

$$F = \left\{ egin{array}{lll} { t Experience(John)} &\leftarrow & 0.7 \\ { t Risk(John)} &\leftarrow & 0.5 \\ { t Sport_car(John)} &\leftarrow & 0.8 \end{array}
ight.$$

$$R = \begin{cases} \texttt{Good_driver}(\mathtt{X}) & \leftarrow & \texttt{Experience}(\mathtt{X}) \land \neg \texttt{Risk}(\mathtt{X}) \\ \texttt{Risk}(\mathtt{X}) & \leftarrow & 0.8 \cdot \texttt{Young}(\mathtt{X}) \\ \texttt{Risk}(\mathtt{X}) & \leftarrow & 0.8 \cdot \texttt{Sport_car}(\mathtt{X}) \\ \texttt{Risk}(\mathtt{X}) & \leftarrow & \texttt{Experience}(\mathtt{X}) \land \neg \texttt{Good_driver}(\mathtt{X}) \end{cases}$$

Then $R \cup F \models \langle \mathtt{Risk}(\mathtt{John}), 0.64 \rangle$

Example (Distributed Information Retrieval)

Then the agent has to perform automatically the following steps:

- 1. the agent has to select a subset of relevant resources $\mathscr{S}' \subseteq \mathscr{S}$, as it is not reasonable to assume to access to and query all resources (resource selection/resource discovery);
- 2. for every selected source $S_i \in \mathcal{S}'$ the agent has to reformulate its information need Q_A into the query language \mathcal{L}_i provided by the resource (schema mapping/ontology alignment);
- 3. the results from the selected resources have to be merged together (data fusion/rank aggregation)

- Resource selection/resource discovery:
 - Use techniques from Distributed Information Retrieval, e.g. CORI
- Schema mapping/ontology alignment:
 - Use machine learning techniques, (implemented in oMap)
 - * Learns automatically weighted rules, like (aligning Google- Yahoo directories)

 ${\tt Mechanical_and_Aerospace_Engineering(d)} \leftarrow 0.51 \cdot {\tt Aeronautics_and_Astronautics(d)}$

- Data fusion/rank aggregation:
 - Use techniques from Information Retrieval and/or Voting Systems,
 e.g. CombMNZ or Borda count

Propositional Fuzzy Logics Basics

- Formulae: propositional formulae
- Truth space is [0,1]
- Formulae have a degree of truth in [0, 1]
- Interpretation: is a mapping $I: Atoms \rightarrow [0, 1]$
- Interpretations are extended to formulae using norms to interpret connectives

negation

$$n(0) = 1$$

 $a \le b \text{ implies } n(b) \le n(a)$
 $n(n(a)) = a$

i-norm (implication)

$$a \le b$$
 implies $i(a,c) \ge i(b,c)$
 $b \le c$ implies $i(a,b) \le i(a,c)$
 $i(0,b) = 1$
 $i(a,1) = 1$
Usually,
 $i(a,b) = \sup\{c \colon t(a,c) \le b\}$

t-norm (conjunction)

$$t(a,1) = a$$

$$b \le c \text{ implies } t(a,b) \le t(a,c)$$

$$t(a,b) = t(b,a)$$

$$t(a,t(b,c)) = t(t(a,b),c)$$

s-norm (disjunction)

$$s(a,0) = a$$

$$b \le c \text{ implies } s(a,b) \le s(a,c)$$

$$s(a,b) = s(b,a)$$

$$s(a,s(b,c)) = s(s(a,b),c)$$

Typical norms

	Lukasiewicz Logic	Gödel Logic	Product Logic	Zadeh	
$\neg x$	1-x	if $x = 0$ then 1	if $x = 0$ then 1	1-x	
1.1.	1-x	else 0	else 0	1 - x	
$x \wedge y$	$\max(x+y-1,0)$	$\min(x,y)$	$x\cdot y$	$\min(x,y)$	
$x \vee y$	$\min(x+y,1)$	$\max(x, y)$	$x + y - x \cdot y$	$\max(x,y)$	
$x \Rightarrow y$	if $x \leq y$ then 1	if $x \leq y$ then 1	if $x \leq y$ then 1	$\max(1-x,y)$	
$x \rightarrow y$	else $1 - x + y$	else y	else y/x	max(1 x, y)	

Note: for Lukasiewicz Logic and Zadeh, $x \Rightarrow y \equiv \neg x \lor y$

Fuzzy DLs Basics

- In classical DLs, a concept C is interpreted by an interpretation \mathcal{I} as a set of individuals
- In fuzzy DLs, a concept C is interpreted by \mathcal{I} as a fuzzy set of individuals
- Each individual is instance of a concept to a degree in [0, 1]
- Each pair of individuals is instance of a role to a degree in [0,1]

Fuzzy ALC concepts

	Syntax		Semantics			
	C, D	\longrightarrow	Τ	$T^{\mathcal{I}}(x)$	=	1
				$\perp^{\mathcal{I}}(x)$	=	0
			$A \mid$	$A^{\mathcal{I}}(x)$	\in	[0, 1]
Concepts:			$C\sqcap D$	$(C_1 \sqcap C_2)^{\mathcal{I}}(x)$	=	$t(C_1^{\mathcal{I}}(x), C_2^{\mathcal{I}}(x))$
			$C \sqcup D \mid$	$(C_1 \sqcup C_2)^{\mathcal{I}}(x)$	=	$s(C_1^{\mathcal{I}}(x), C_2^{\mathcal{I}}(x))$
			$\neg C \mid$	$(\neg C)^{\mathcal{I}}(x)$	=	$n(C^{\mathcal{I}}(x))$
			$\exists R.C \mid$	$(\exists R.C)^{\mathcal{I}}(x)$	=	$\sup_{y \in \Delta^{\mathcal{I}}} t(R^{\mathcal{I}}(x, y), C^{\mathcal{I}}(y))$
			$\forall R.C$	$(\forall R.C)^{\mathcal{I}}(u)$	=	0 $[0,1]$ $t(C_1^{\mathcal{I}}(x), C_2^{\mathcal{I}}(x))$ $s(C_1^{\mathcal{I}}(x), C_2^{\mathcal{I}}(x))$ $n(C^{\mathcal{I}}(x))$ $\sup_{y \in \Delta^{\mathcal{I}}} t(R^{\mathcal{I}}(x, y), C^{\mathcal{I}}(y))$ $\inf_{y \in \Delta^{\mathcal{I}}} i(R^{\mathcal{I}}(x, y), C^{\mathcal{I}}(y))$

Assertions: $\langle a:C,n\rangle$, $\mathcal{I} \models \langle a:C,n\rangle$ iff $C^{\mathcal{I}}(a^{\mathcal{I}}) \geq n$ (similarly for roles)

• individual a is instance of concept C at least to degree $n, n \in [0, 1] \cap \mathbb{Q}$

Inclusion axioms: $C \sqsubseteq D$,

• $\mathcal{I} \models C \sqsubseteq D \text{ iff } \forall x \in \Delta^{\mathcal{I}}.C^{\mathcal{I}}(x) \leq D^{\mathcal{I}}(x), \text{ (alternative, } \forall x \in \Delta^{\mathcal{I}}.i(C^{\mathcal{I}}(x),D^{\mathcal{I}}(x)) = 1)$

Basic Inference Problems

Consistency: Check if knowledge is meaningful

• Is K consistent?

Subsumption: structure knowledge, compute taxonomy

• $\mathcal{K} \models C \sqsubseteq D$?

Equivalence: check if two fuzzy concepts are the same

• $\mathcal{K} \models C = D$?

Graded instantiation: Check if individual a instance of class C to degree at least n

• $\mathcal{K} \models \langle a:C,n \rangle$?

BTVB: Best Truth Value Bound problem

• $glb(\mathcal{K}, a:C) = \sup\{n \mid \mathcal{K} \models \langle a:C, n \rangle\}$?

Retrieval: Rank set of individuals that instantiate C w.r.t. best truth value bound

• Rank the set $\mathcal{R}(\mathcal{K}, C) = \{ \langle a, glb(\mathcal{K}, a:C) \rangle \}$

Some Notes on ...

- Value restrictions:
 - In classical DLs, $\forall R.C \equiv \neg \exists R. \neg C$
 - The same is not true, in general, in fuzzy DLs (depends on the operators' semantics, not true in Gödel logic).

 \forall hasParent.Human $\not\equiv \neg \exists$ hasParent. \neg Human ??

- Models:
 - In classical DLs $\top \sqsubseteq \neg(\forall R.A) \sqcap (\neg \exists R.\neg A)$ has no classical model
 - In Gödel logic it has no finite model, but has an infinite model
- The choice of the appropriate semantics of the logical connectives is important.
 - Should have reasonable logical properties
 - Certainly it must have efficient algorithms solving basic inference problems
- Lukasiewicz Logic seems the best compromise, though Zadeh semantics has been considered historically in DLs (Zadeh semantics is not considered by fuzzy logicians)

Towards fuzzy OWL Lite and OWL DL

- Recall that OWL Lite and OWL DL relate to $\mathcal{SHIF}(D)$ and $\mathcal{SHOIN}(D)$, respectively
- We need to extend the semantics of fuzzy \mathcal{ALC} to fuzzy $\mathcal{SHOIN}(D) = \mathcal{ALCHOINR}_{+}(D)$
- Additionally, we add modifiers (e.g., very)
- Additionally, we add concrete fuzzy concepts (e.g., Young)

Concrete fuzzy concepts

- E.g., Small, Young, High, etc. with explicit membership function
- Use the idea of concrete domains:
 - $D = \langle \Delta_{D}, \Phi_{D} \rangle$
 - $-\Delta_{D}$ is an interpretation domain
 - Φ_{D} is the set of concrete fuzzy domain predicates d with a predefined arity n = 1, 2 and fixed interpretation $d^{D}: \Delta_{D}^{n} \to [0, 1]$
 - For instance,

Minor = Person $\sqcap \exists hasAge. \leq_{18}$

YoungPerson = Person $\sqcap \exists hasAge.Young$

Modifiers

- Very, moreOrLess, slightly, etc.
- Apply to fuzzy sets to change their membership function
 - $-\operatorname{very}(x) = x^2$
 - slightly(x) = \sqrt{x}
- For instance,

 $SportsCar = Car \sqcap \exists speed.very(High)$

Number Restrictions and Transitive roles

• The semantics of the concept $(\geq n S)$

$$(\geq n R)^{\mathcal{I}}(x) = \sup_{\{y_1, \dots, y_n\} \subseteq \Delta^{\mathcal{I}}} \bigwedge_{i=1}^n R^{\mathcal{I}}(x, y_i)$$

• Is the result of viewing $(\geq n R)$ as the open first order formula

$$\exists y_1, \dots, y_n. \bigwedge_{i=1}^n R(x, y_i) \land \bigwedge_{1 \le i < j \le n} y_i \ne y_j.$$

• The semantics of the concept $(\leq n R)$

$$(\leq n R)^{\mathcal{I}}(x) = \neg(\geq n+1 R)^{\mathcal{I}}(x)$$

- Note: $(\geq 1 R) \equiv \exists R. \top$
- For transitive roles R we impose: for all $x, y \in \Delta^{\mathcal{I}}$

$$R^{\mathcal{I}}(x,y) \ge \sup_{z \in \Delta^{\mathcal{I}}} \min(R^{\mathcal{I}}(x,z), R^{\mathcal{I}}(z,y))$$

Reasoning

- For full fuzzy $\mathcal{SHOIN}(D)$ or $\mathcal{SHIF}(D)$: does not exists yet
- Exists for fuzzy ALC(D) + modifiers + fuzzy concrete concepts
 - Under Lukasiewicz semantics
 - Under "Zadeh semantics" without GCI
- Exists for SHIN and Zadeh semantics (classical blocking methods apply similarly in the fuzzy variant)
- On the way for GCI (both for Lukasiewicz Logic and Zadeh semantics)

Basic decision algorithm

- There are:
 - Translations of fuzzy DLs to classical DLs (not addressed here)
 - Tableau algorithms similar to classical DL tableaux
- Most problems can be reduced to consistency check, e.g.
 - Assertions are extended to $\langle a:C \geq n \rangle$, $\langle a:C \leq n \rangle$, $\langle a:C > n \rangle$ and $\langle a:C < n \rangle$
 - $-\mathcal{K} \models \langle a:C,n\rangle \text{ iff } \mathcal{K} \cup \{\langle a:C < n\rangle\} \text{ not consistent}$
 - * All models of \mathcal{K} do not satisfy $\langle a:C < n \rangle$, i.e. do satisfy $\langle a:C \geq n \rangle$
- Let's see a tableaux algorithm for consistency check, where

$$t(x,y) = \min(x,y)$$

$$s(x,y) = \max(x,y)$$

$$n(x) = 1-x$$

$$i(x,y) = s(n(x),y) = \max(1-x,y)$$

Tableaux checking consistency of an \mathcal{ALC} KB

- Works on a tree forest (semantics through viewing tree as an ABox)
 - Nodes represent elements of $\Delta^{\mathcal{I}}$, labelled with sub-concepts of C and their weights
 - Edges represent role-successorships between elements of $\Delta^{\mathcal{I}}$ and their weights
- Works on concepts in negation normal form: push negation inside using de Morgan' laws and

$$\neg(\exists R.C) \quad \mapsto \quad \forall R.\neg C$$
$$\neg(\forall R.C) \quad \mapsto \quad \exists R.\neg C$$

- It is initialised with a tree forest consisting of root nodes a, for all individuals appearing in the KB:
 - If $\langle a:C\bowtie n\rangle\in\mathcal{K}$ then $\langle C,\bowtie,n\rangle\in\mathcal{L}(a)$
 - If $\langle (a,b):R\bowtie n\rangle\in\mathcal{K}$ then $\langle \langle a,b\rangle,\bowtie,n\rangle\in\mathcal{E}(R)$
- A tree forest T contains a clash if for a tree T in the forest there is a node x in T, containing a conjugated pair $\{\langle A, \triangleright, n \rangle, \langle C, \triangleleft, m \rangle\} \subseteq \mathcal{L}(x)$, e.g. $\langle A, \geq, 0.6 \rangle, \langle A, <, 0.3 \rangle$
- Returns " \mathcal{K} is consistent" if rules can be applied s.t. they yield a clash-free, complete (no more rules apply) tree forest

\mathcal{ALC} Tableau rules (excerpt)

$x \bullet \{\langle C_1 \sqcap C_2, \geq, n \rangle, \ldots\}$	\longrightarrow \sqcap	$x \bullet \{\langle C_1 \sqcap C_2, \geq, n \rangle, \langle C_1, \geq, n \rangle, \langle C_2, \geq, n \rangle, \ldots\}$	
$x \bullet \{\langle C_1 \sqcup C_2, \geq, n \rangle, \ldots\}$	─ ──	$x \bullet \{\langle C_1 \sqcup C_2, \geq, n \rangle, \langle C, \geq, n \rangle, \ldots \}$	
		for $C \in \{C_1, C_2\}$	
$x \bullet \{\langle \exists R.C, \geq, n \rangle, \ldots \}$	\longrightarrow \exists	$x \bullet \{\langle \exists R.C, \geq, n \rangle, \ldots \}$	
		$\langle R, \geq, n \rangle \downarrow$	
		$y \bullet \{\langle C, \geq, n \rangle\}$	
$x \bullet \{ \langle \forall R.C, \geq, n \rangle, \ldots \}$	$\longrightarrow \forall$	$x \bullet \{ \langle \forall R.C, \geq, n \rangle, \ldots \}$	
$\langle R, \geq, m \rangle \downarrow \qquad (m > 1 - n)$		$\langle R, \geq, m \rangle \downarrow$	
$y \bullet \{\ldots\}$		$y \bullet \{\ldots, \langle C, \geq, n \rangle \}$	
:	:		

Soundness and Completeness

Theorem 1 Let K be an ALC KB and F obtained by applying the tableau rules to K. Then

- 1. The rule application terminates,
- 2. If F is clash-free and complete, then F defines a (canonical) (tree forest) model for K, and
- 3. If K has a model I, then the rules can be applied such that they yield a clash-free and complete forest F.

Corollary 1

- 1. The tableau algorithm is a PSPACE (using depth-first search) decision procedure for consistency of ALC KBs.
- 2. ALC individuals have the tree-model property

The tableau can be modified to a decision procedure for

- SHIN ($\equiv ALCHINR_+$)
- TBox with acyclic concept definitions using lazy unfolding (unfolding on demand)
- For general inclusion axioms $C \sqsubseteq D$ (on the way)

Problem with fuzzy tableau

- Usual fuzzy tableaux calculus does not work anymore with
 - modifiers and concrete fuzzy concepts
 - Lukasiewicz Logic
- Usual fuzzy tableaux calculus does not solve the BTVB problem
- New algorithm uses bounded Mixed Integer Programming oracle, as for Many Valued Logics
 - Recall: the general MILP problem is to find

$$\bar{\mathbf{x}} \in \mathbb{Q}^k, \bar{\mathbf{y}} \in \mathbb{Z}^m$$

$$f(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = \min\{f(\mathbf{x}, \mathbf{y}) : A\mathbf{x} + B\mathbf{y} \ge \mathbf{h}\}$$
 $A, B \text{ integer matrixes}$

Requirements

- Works for usual fuzzy DL semantics (Zadeh semantics) and Lukasiewicz logic
- Modifiers are definable as linear in-equations over \mathbb{Q}, \mathbb{Z} (e.g., linear hedges), for instance, linear hedges, lm(a,b), e.g. very = lm(0.7, 0.49)
- Fuzzy concrete concepts are definable as linear in-equations over \mathbb{Q}, \mathbb{Z} (e.g., crisp, triangular, trapezoidal, left shoulder and right shoulder membership functions)

• Example:

Minor
$$=$$
 Person $\sqcap \exists has Age. \leq_{18}$
YoungPerson $=$ Person $\sqcap \exists has Age. Young
Young $=$ 1s(10,30)
 \leq_{18} $=$ cr(0,18)$

• Then

$$glb(\mathcal{K}, a:C) = \min\{x \mid \mathcal{K} \cup \{\langle a:C \leq x \rangle \text{ satisfiable}\}$$

 $glb(\mathcal{K}, C \sqsubseteq D) = \min\{x \mid \mathcal{K} \cup \{\langle a:C \sqcap \neg D \geq 1 - x \rangle \text{ satisfiable}\}$

- Apply tableaux calculus (without non-deterministic branches), then use bounded Mixed Integer Programming oracle

\mathcal{ALC} Tableau rules (excerpt)

$x \bullet \{\langle C_1 \sqcap C_2, \geq, l \rangle, \ldots\}$	→□	$x \bullet \{\langle C_1 \sqcap C_2, \geq, l \rangle, \langle C_1, \geq, l \rangle, \langle C_2, \geq, l \rangle, \ldots\}$	
$x \bullet \{\langle C_1 \sqcup C_2, \geq, l \rangle, \ldots\}$		$x \bullet \{\langle C_1 \sqcup C_2, \geq, l \rangle, \langle C_1, \geq, x_1 \rangle, \langle C_2, \geq, x_2 \rangle,$	
		$x_1 + x_2 = l, x_1 \le y, x_2 \le 1 - y,$	
		$x_i \in [0,1], y \in \{0,1\}, \ldots\}$	
$x \bullet \{\langle \exists R.C, \geq, l \rangle, \ldots \}$	>∃	$x \bullet \{\langle \exists R.C, \geq, l \rangle, \ldots \}$	
		$\langle R, \geq, l \rangle \downarrow$	
		$y \bullet \{\langle C, \geq, l \rangle\}$	
$x \bullet \{ \langle \forall R.C, \geq, l_1 \rangle, \ldots \}$	$\longrightarrow \forall$	$x \bullet \{ \langle \forall R.C, \geq, l_1 \rangle, \ldots \}$	
$\langle R, \geq, l_2 \rangle \downarrow$		$\langle R, \geq, l_2 \rangle \downarrow$	
$y \bullet \{\ldots\}$		$y \bullet \{\ldots, \langle C, \geq, x \rangle$	
		$x + y \ge l_1, x \le y, l_1 + l_2 \le 2 - y,$	
		$x \in [0, 1], y \in \{0, 1\}\}$	
· ·	:		
$x \bullet \{A \sqsubseteq C, \langle A, \geq, l \rangle, \ldots\}$	\longrightarrow \sqsubseteq_1	$x \bullet \{A \sqsubseteq C, \langle C, \geq, l \rangle, \ldots\}$	
$x \bullet \{C \sqsubseteq A, \langle A, \leq, l \rangle, \ldots\}$	\longrightarrow \sqsubseteq_2	$x \bullet \{C \sqsubseteq A, \langle C, \leq, l \rangle, \ldots\}$	
	:		

Example

$$\mathcal{K} = \begin{cases} A \sqcap B \sqsubseteq C \\ \langle a:A \ge 0.3 \rangle \\ \langle a:B \ge 0.4 \rangle \end{cases}$$

 \bullet Suppose

$$Query := glb(\mathcal{K}, a:C) = \min\{x \mid \mathcal{K} \cup \{\langle a:C \leq x \rangle \text{ satisfiable}\}\$$

Step	Tree	
1.	$a \bullet \{\langle A, \geq, 0.3 \rangle, \langle B, \geq, 0.4 \rangle, \langle C, \leq, x \rangle\}$	(Hypothesis)
2.	$\cup \{\langle A \sqcap B, \leq, x \rangle\}$	$(\rightarrow_{\sqsubseteq_2})$
3.	$\cup \{\langle A, \leq, x_1 \rangle, \langle B, \leq, x_2 \rangle\}$	$(\rightarrow_{\sqcap_{\leq}})$
	$\cup \{x = x_1 + x_2 - 1, 1 - y \le x_1, y \le x_2\}$	
	$\cup \{x_i \in [0,1], y \in \{0,1\}\}$	
4.	find $\min\{x \mid \langle a:A \geq 0.3 \rangle, \langle a:B \geq 0.4 \rangle,$	(MILP Oracle)
	$\langle a:C \leq x \rangle, \langle a:A \leq x_1 \rangle, \langle a:B \leq x_2 \rangle,$	
	$x = x_1 + x_2 - 1, 1 - y \le x_1, y \le x_2,$	
	$x_i \in [0, 1], y \in \{0, 1\}\}$	
5.	MILP oracle: $\mathbf{x} = 0.3$	

Implementation issues

- Several options exists:
 - Try to map fuzzy DLs to classical DLs
 - * but, does not work with modifiers and concrete fuzzy concepts
 - Try to map fuzzy DLs to some fuzzy logic programming framework
 - * A lot of work exists about mappings among classical DLs and LPs
 - * But, needs a theorem prover for fuzzy LPs (see next part)
 - * To be used then e.g. in the axiomatic approach to fuzzy DLPs
 - Build an ad-hoc theorem prover for fuzzy DLs, using e.g., MILP
 - * To be used then separately e.g. in the DL-log approach to fuzzy DLPs
- A theorem prover for fuzzy \mathcal{ALC} + linear hedges + concrete fuzzy concepts, using MILP, has been implemented

Future Work on fuzzy DLs

- Research directions:
 - Computational complexity of the fuzzy DLs family
 - Design of efficient reasoning algorithms
 - Combining fuzzy DLs with Logic Programming
 - Language extensions: e.g. fuzzy quantifiers

```
\label{eq:customer} \begin{split} & \texttt{TopCustomer} = \texttt{Customer} \sqcap (\texttt{Usually}) \texttt{buys}. \texttt{ExpensiveItem} \\ & \texttt{ExpensiveItem} = \texttt{Item} \sqcap \exists \texttt{price}. \texttt{High} \end{split}
```

- Developing a system
- **—** ...

Fuzzy LPs Basics

- Many Logic Programming (LP) frameworks have been proposed to manage uncertain and imprecise information. They differ in:
 - The underlying notion of uncertainty and imprecision: probability, possibility, many-valued, fuzzy sets
 - How values, associated to rules and facts, are managed
- We consider fuzzy LPs, where
 - Truth space is $[0,1]_{\mathbb{Q}}$
 - Interpretation is a mapping $I: B_{\mathcal{P}} \to [0,1]_{\mathbb{Q}}$
 - Generalized LP rules are of the form

$$f(A_1,\ldots,A_n) \Rightarrow A$$

- * A and A_i atoms and f total, monotone, finite-time computable function $f:[0,1]^n_{\mathbb{Q}} \to [0,1]_{\mathbb{Q}}$
- * Meaning of rules: take the truth-values of $A_1, ... A_n$, combine them using the function f, and assign the result to A

Example

```
\min(\quad \texttt{Location}(\texttt{hotel}, \texttt{hotelLocation}), \\ \texttt{Distance}(\texttt{hotelLocation}, \texttt{buisinessLocation}, \texttt{distance}), \\ \texttt{Close}(\texttt{distance}) \\ ) \\ \Longrightarrow \quad \texttt{NearTo}(\texttt{businessLocation}, \texttt{hotel}) \\ \text{where } \texttt{Close}(x) = max(0, 1 - x/1000). \\
```

Semantics of fuzzy LPs

- Model of a LP: $I \models \mathcal{P}$ iff $I \models r$, for all $r \in \mathcal{P}^*$, where $-I \models f(A_1, \ldots, A_n) \Rightarrow A$ iff $f(I(A_1), \ldots, I(A_n)) \leq I(A)$
- Least model exists and is least fixed-point of

$$T_{\mathcal{P}}(I)(A) = I(\varphi)$$

for all $\varphi \Rightarrow A \in \mathcal{P}^*$

• Note: Extension to fuzzy Normal Logic Programs exists, as well as a query answering procedure. However, we will not deal with that here.

Query answering for fuzzy LPs

- Given a logic program \mathcal{P} , given a query atom A,
 - compute the minimal model I of \mathcal{P} (bottom-up, using $T_{\mathcal{P}}$)
 - answer with I(A)

• Problems:

- Least model can be very huge
- You do not need to compute the whole least model I of \mathcal{P} to answer with I(A), e.g.
 - * $\mathcal{P} = \{B \Rightarrow A, 1 \Rightarrow B\} \cup \mathcal{P}'$, where A does not appear in \mathcal{P}'

A general top-down query procedure for fuzzy LPs

- Idea: use theory of fixed-point computation of equational systems over $[0,1]_{\mathbb{Q}}$
- Assign a variable x_i to an atom $A_i \in B_{\mathcal{P}}$
- Map a rule $f(A_1, ..., A_n) \Rightarrow A \in \mathcal{P}^*$ into the equation $x_A = f(x_{A_1}, ..., x_{A_n})$
- A LP \mathcal{P} is thus mapped into the equational system

$$\begin{cases} x_1 &= f_1(x_{1_1}, \dots, x_{1_{a_1}}) \\ \vdots \\ x_n &= f_n(x_{n_1}, \dots, x_{n_{a_n}}) \end{cases}$$

• f_i is monotone and, thus, the system has least fixed-point, which is the limit of

$$\mathbf{y}_0 = \mathbf{0}$$
 $\mathbf{y}_{i+1} = \mathbf{f}(\mathbf{y}_i)$.

where
$$\mathbf{f} = \langle f_1, \dots, f_n \rangle$$
 and $\mathbf{f}(\mathbf{x}) = \langle f_1(x_1), \dots, f_n(x_n) \rangle$

- The least-fixed point is the least model of \mathcal{P}
- Consequence: If top-down procedure exists for equational systems then it works for fuzzy LPs too!

```
Input: monotonic system S = \langle \mathcal{L}, V, \mathbf{f} \rangle, where Q \subseteq V is the set of query variables; Output: A set B \subseteq V, with Q \subseteq B such that the mapping \mathbf{v} equals lfp(f) on B.

A: = Q, dg: = Q, in: = \emptyset, for all x \in V do \mathbf{v}(x) = 0, exp(x) = 0

while \mathbf{A} \neq \emptyset do

select x_i \in \mathbf{A}, \mathbf{A}: = \mathbf{A} \setminus \{x_i\}, dg: = dg \cup s(x_i)

r: = f_i(\mathbf{v}(x_{i_1}), ..., \mathbf{v}(x_{i_{d_i}}))
```

if not $\exp(x_i)$ then $\exp(x_i) = 1$, A: $= A \cup (s(x_i) \setminus in)$, in: $= in \cup s(x_i)$ fi

if $r \succ v(x_i)$ then $v(x_i)$: = r, A: $= A \cup (p(x_i) \cap dg)$ fi

Procedure Solve(S, Q)

1.

2.

3.

4.

5.

6.

od

- Set of facts $0.7 \Rightarrow \texttt{Experience(john)}, 0.5 \Rightarrow \texttt{Risk(john)}, 0.8 \Rightarrow \texttt{Sport_car(john)}$
- Set of rules, which after grounding are:

$$\begin{array}{lll} \texttt{Experience(john)} \wedge (0.5 \cdot \texttt{Risk(john)}) & \Rightarrow & \texttt{Good_driver(john)} \\ 0.8 \cdot \texttt{Young(john)} & \Rightarrow & \texttt{Risk(john)} \\ 0.8 \cdot \texttt{Sport_car(john)} & \Rightarrow & \texttt{Risk(john)} \\ \texttt{Experience(john)} \wedge (0.5 \cdot \texttt{Good_driver(john)}) & \Rightarrow & \texttt{Risk(john)} \\ \end{array}$$

1. A:
$$= \{x_{R(j)}\}, x_i := x_{R(j)}, A := \emptyset, dg := \{x_{R(j)}, x_{Y(j)}, x_{S(j)}, x_{E(j)}, x_{G(j)}\}, r := 0.5, v(x_{R(j)}) := 0.5, dg := \{x_{R(j)}\}, exp(x_{R(j)}) := 1, A := \{x_{Y(j)}, x_{S(j)}, x_{E(j)}, x_{G(j)}\}, in := \{x_{Y(j)}, x_{S(j)}, x_{E(j)}, x_{G(j)}\}$$

- 2. $x_i:=x_{Y(i)}, A:=\{x_{S(i)},x_{E(i)},x_{G(i)}\}, r:=0, \exp(x_{Y(i)}):=1$
- $3. \qquad x_i \colon = x_{\mathtt{S}(\mathtt{j})}, \mathtt{A} \colon = \{x_{\mathtt{E}(\mathtt{j})}, x_{\mathtt{G}(\mathtt{j})}\}, r \colon = 0.8, \mathtt{v}(x_{\mathtt{S}(\mathtt{j})}) \colon = 0.8, \mathtt{A} \colon = \{x_{\mathtt{E}(\mathtt{j})}, x_{\mathtt{G}(\mathtt{j})}, x_{\mathtt{R}(\mathtt{j})}\}, \exp(x_{\mathtt{S}(\mathtt{j})}) \colon = 1$
- 4. $x_i := x_{E(i)}, A := \{x_{G(i)}, x_{R(i)}\}, r := 0.7, v(x_{E(i)}) := 0.7, \exp(x_{E(i)}) := 1$
- 5. $x_i := x_{G(j)}, A := \{x_{R(j)}\}, r := 0.25, v(x_{G(j)}) := 0.25, exp(x_{G(j)}) := 1,$ $in := \{x_{Y(j)}, x_{S(j)}, x_{E(j)}, x_{G(j)}, x_{R(j)}\}$
- 6. $x_i := x_{R(j)}, A := \emptyset, r := 0.64, v(x_{R(j)}) := 0.64, A := \{x_{G(j)}\}$
- 7. $x_i := x_{\mathtt{G(j)}}, \mathtt{A} := \emptyset, r := 0.32, \mathtt{v}(x_{\mathtt{G(j)}}) := 0.32, \mathtt{A} := \{x_{\mathtt{R(j)}}\}$
- 8. $x_i := x_{G(i)}, A := \emptyset, r := 0.64$
- 10. stop. return v (in particular, $v(x_{R(i)}) = 0.64$)

Future Work on fuzzy LPs

- Research directions:
 - Developing a system for fuzzy LPs (i.e. implement the top-down algorithm, e.g. use lparse for grounding)
 - Mapping between fuzzy OWL Lite and fuzzy LPs (I guess they are in the same complexity class)
 - * Problem: membership functions of concrete concepts are not necessarily monotone
 - * A MILP oracle in fuzzy LPs may be needed
 - More general equations: from $x = f(x_1, ..., x_n)$ to e.g.

$$x_{i1} \vee \ldots \vee x_{ik} = f(x_1, \ldots, x_n)$$

to accommodate disjunctive fuzzy LPs

- Mapping between fuzzy OWL DL and fuzzy disjunctive LPs

Fuzzy DLPs Basics

- Combine fuzzy DLs with fuzzy LPs:
 - DL atoms and roles may appear in rules

```
\min(\texttt{made\_by}(x,y), \langle \texttt{ChineseCarCompany}\rangle(y)), \texttt{prize}(x,z) \Rightarrow \texttt{LowCarPrize}(z) \\ \texttt{LowCarPrize}(z) = \texttt{ls}(5.000,15.000) \\ \texttt{ChineseCarCompany} \sqsubseteq \exists \texttt{has\_location.China}
```

- Knowledge Base is a pair $KB = \langle \mathcal{P}, \Sigma \rangle$, where
 - $-\mathcal{P}$ is a fuzzy logic program
 - $-\Sigma$ is a fuzzy DL knowledge base (set of assertions and inclusion axioms)

Fuzzy DLPs Semantics

- Semantics: two main approaches
 - 1. Axiomatic approach: fuzzy DL atoms and roles are managed uniformely
 - -I is a model of $KB = \langle \mathcal{P}, \Sigma \rangle$ iff $I \models \mathcal{P}$ and $I \models \Sigma$
 - 2. DL-log approach: fuzzy DL atoms and roles are procedural attachments (calls to a fuzzy DL theorem prover)
 - -I is a model of $KB = \langle \mathcal{P}, \Sigma \rangle$ iff $I^{\Sigma} \models \mathcal{P}$
 - $-I^{\Sigma}(A) = I(A)$ for all ground non-DL atoms A
 - $-I^{\Sigma}(\langle A \rangle(a)) = glb(\Sigma, a:A)$ for all ground DL atoms $\langle A \rangle(a)$
 - $-I^{\Sigma}(\langle R \rangle(a,b)) = glb(\Sigma,(a,b):R)$ for all ground DL roles $\langle R \rangle(a,b)$
- DL-log has the minimal model property of fuzzy LPs and a fixed-point characterization: $T_{\mathcal{P}}(I)(A) = I^{\Sigma}(\varphi)$, for $\varphi \Rightarrow A \in \mathcal{P}^*$

A top-down procedure for the DL-log approach

- Combine $Solve(\mathcal{S}, Q)$ with a theorem prover for fuzzy DLs
 - Modify Step 1. of algorithm $Solve(\mathcal{S}, Q)$
 - * for all x_{i_j} DL-atoms $\langle A \rangle(a)$ (similarly for roles)
 - · compute $\bar{x}_{i_i} = glb(\mathcal{K}, a:A)$
 - set $\mathbf{v}(x_{i_i}) = \bar{x}_{i_i}$, instead of $\mathbf{v}(x_{i_i}) = 0$
- Essentially, for all DL-atoms $\langle A \rangle(a)$ we compute off-line $glb(\mathcal{K}, a:A)$ and add then the rule $A(a) \leftarrow glb(\mathcal{K}, a:A)$ to \mathcal{P}
- A solution for the axiomatic approach is not known yet

Conclusions

- Fuzzy DLs, fuzzy LPs and fuzzy DLPs allow to deal with imprecise concepts
 - Formulae have a degree of truth
 - Explicit membership functions are allowed
- We shown some applications of these languages and reasoning procedures