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DLs Basics

e Concept names are equivalent to unary predicates

— In general, concepts equiv to formulae with one free variable

e Role names are equivalent to binary predicates

— In general, roles equiv to formulae with two free variables
e Individual names are equivalent to constants

e Operators restricted so that:
— Language is decidable and, if possible, of low complexity

— No need for explicit use of variables
x Restricted form of 4 and V

— Features such as counting can be succinctly expressed

o
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The DL Family

e A given DL is defined by set of concept and role forming operators

e Basic language: ALC(Attributive Language with Complement)

Syntax Example
c,D — T | (top concept)
1 | (bottom concept)
A | (atomic concept) Human
C D | (concept conjunction) Human M Male
CuD | (concept disjunction) Nice lMRich
—C | (concept negation) —Meat
JR.C | (existential quantification) Jhas_child.Blond
VR.C (universal quantification) Vhas_child.Human
CLCD (inclusion axiom) Happy_Father C Man ' Jhas_child.Female
a:C (assertion) John:Happy_Father
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DLs Semantics

e Interpretation: T = (AZ,-7), where AZ is the domain (a non-empty set), -

interpretation function that maps:
— Concept (class) name A into a function AZ: AZ — {0,1}

— Role (property) name R into a function R : AT x AT — {0,1}

— Individual name a into an element of AZ

e ALC mapping to FOL:

T(z)

A(z)

(C1 U C2)(x)
(3R.C)(x)

CCD

o

U111

[

1
A(x)
Ch (:C) VvV C9 (a:)
Jy.R(z,y) A C(y)

Ve.C(x) = D(x)

1L (@)
(Cl [ 02)(:13)

(—C)(x)
(VR.C)(z)

a:C
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0
Ci(x) AN Ca(x)
—C(z)
Vy.R(z,y) = C(y)

C(a)




K\Tote on DL naming \

Ac. ¢, D — T |L |A |CND |—-A |3dR. T |VR.C
Concept negation, =C'. Thus, ALC = AL +C

Used for ALC with transitive roles R4

Concept disjunction, C'y LI Co

Existential quantification, dR.C

: Role inclusion axioms, R; L Rg, e.g. is_component_of L is_part_of

: Number restrictions, (> n R) and (< n R), e.g. (> 3 has_Child) (has at least 3 children)

© zZ T ML B O

Qualified number restrictions, (> n R.C) and (< n R.C), e.g. (< 2 has_Child.Adult) (has at
most 2 adult children)

O: Nominals (singleton class), {a}, e.g. Jhas_child.{mary}.
Note: a:C equiv to {a} C C and (a,b):R equiv to {a} C IR.{b}

Z: Inverse role, R, e.g.
F: Functional role, f

For instance,

o

SHIF = S+H+T+F=ALCRLHIF
SHOIN = S+H+O+IT+N=ALCRLHOIN

/




/Concrete domains

e Concrete domains: integers, strings, ...

e Clean separation between object classes and concrete domains

D = (Ap, $p)
Ap is an interpretation domain

®p is the set of concrete domain predicates d with a predefined arity n and fixed
interpretation d°: A} — {0, 1}

Concrete properties: RY: AT x Ap — {0,1}, e.g., (tim, 14):hasAge,

(sf, “SoftComputing” ):hasAcronym

e Philosophical reasons: concrete domains structured by built-in predicates

e Practical reasons:

language remains simple and compact

Semantic integrity of language not compromised

— Implementability not compromised can use hybrid reasoner

% Only need sound and complete decision procedure for di% A ... A d,%, where d; is
(posssibly negated) concrete property

\o Notation: (D). E.g., ALC(D) is ALC + concrete domains

a

/
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LPs Basics (for ease, without default negation)

e Predicates are n-ary
e Terms are variables or constants

e Rules are of the form
Bi(x1) A ... A Bp(xn) = P(x)
For instance,
has_parent(x,y) AMale(y) = has_father(x,y)

e Facts are rules with empty body

For instance,

o

has_parent(mary, jo)




/LPS Semantics: FOL semantics \

e P* is constructed as follows:
1. set P* to the set of all ground instantiations of rules in P;
2. if atom A is not head of any rule in P*, then add 0 = A to P*;

3. replace several rules in P* having same head

\

p1 = A

w2 = A
> with o1 Va2 V...V, = A.

on = A

/

e Note: in P* each atom A € Bp is head of exaclty one rule
e Herbrand Base of P is the set Bp of ground atoms
e Interpretation is a function I : Bp — {0, 1}.

e Model I =P iff for all r € P* I =7, where [ = = A iff I(¢) < I(A)

Ko Least model exists and is least fixed-point of Tp(I)(A) = I(p), for all p = A € P* /
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DLPs Basics

e Combine DLs with LPs:

— DL atoms and roles may appear in rules

made _by(z,y) A (Chinese_Company)(y) = prize(x, low)

Chinese_Company L Jhas_location.China

e Knowledge Base is a pair KB = (P, X)), where
— P is a logic program

— XY is a DL knowledge base (set of assertions and inclusion axioms)

o
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/I)LPS Semantics \

e Semantics: two main approaches

1. Axiomatic approach: DL atoms and roles are managed uniformely
— Jlisamodelof KB=(P,Y)iff I[FPand I =X

2. DL-log approach: DL atoms and roles are procedural attachments (calls to a
DL theorem prover)
— T'is amodel of KB = (P, %) iff I* =P
— I* is a model of a ground non-DL atom A € Bp iff [(A) =1
— I* is a model of a ground DL atom (A)(a) iff ¥ = a:A
— I* is a model of a ground DL role (R)(a,b) iff ¥ = (a,b):R

e Axiomatic approach: easy to get undecidability results (e.g. recursive rules + V)
e DL-log entailment C Axiomatic entailment
e Axiomatic approach does not enjoy the minimal model property of LPs

e DL-log has the minimal model property of LPs and a fixed-point

\ characterization: Tp (I)(A) = I*(p), for all ¢ = A € P* /

12



Basics of the Semantic Web and Ontologies'

13
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The Semantic Web Vision and DLs

e The WWW as we know it now
— 1st generation web mostly handwritten HT'ML pages
— 2nd generation (current) web often machine generated /active
— Both intended for direct human processing/interaction
e In next generation web, resources should be more accessible to automated
processes
— To be achieved via semantic markup

— Metadata annotations that describe content/function

\_ /
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/()ntologies

e Semantic markup must be meaningful to automated processes

e Ontologies will play a key role
— Source of precisely defined terms (vocabulary)

— Can be shared across applications (and humans)

e Ontology typically consists of:
— Hierarchical description of important concepts in domain

— Descriptions of properties of instances of each concept

e Ontologies can be used, e.g.
— To facilitate agent-agent communication in e-commerce
— In semantic based search

— To provide richer service descriptions that can be more flexibly

\ interpreted by intelligent agents

/
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Example Ontology

e Vocabulary and meaning (definitions)
— Elephant is a concept whose members are a kind of animal

— Herbivore is a concept whose members are exactly those animals who

eat only plants or parts of plants
— Adult_Elephant is a concept whose members are exactly those
elephants whose age is greater than 20 years
e Background knowledge/constraints on the domain (general axioms)
— Adult_Elephants weigh at least 2,000 kg
— All Elephants are either African_Elephants or Indian_Elephants

— No individual can be both a Herbivore and a Carnivore

o /
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/()ntology Description Languages \

e Should be sufficiently expressive to capture most useful aspects of domain

knowledge representation
e Reasoning in it should be decidable and efficient
e Many different languages has been proposed: RDF, RDFS, OIL, DAML~+OIL
e OWL (Ontology Web Language) is the current emerging language. There are
three species of OWL

— OWL full is union of OWL syntax and RDF (but, undecidable)

— OWL DL restricted to FOL fragment (reasoning problem in NEXPTIME)
x based on SHZO Description Logic (ALCHZIOR+)

— OWL Lite is easier to implement subset of OWL DL (reasoning problem in
EXPTIME)
x based on SHZF Description Logic (ALCHZFR+)

Ko SWRL, a Semantic Web Rule Language combines OWL and RuleML /

17
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Abstract Syntax DL Syntax Example

Descriptions (C')
A (URI reference) A Conference
owl:Thing T
owl:Nothing 1
intersection0f(Cy C2...) Ci1M1Csy Reference M Journal
union0f(C; Cs . ..) C1 U Co Organization LI Institution
complement0f (C') -C — MasterThesis
one0f (o1 ...) {o1,...} {"WISE","ISwC",...}
restriction(R someValuesFrom(C')) JR.C Jparts.InCollection
restriction(R allValuesFrom(C')) VR.C Vdate.Date
restriction(R hasValue(0)) R:o date : 2005
restriction(R minCardinality(n)) (>n R) > 1 location
restriction(R maxCardinality(n)) (<n R) < 1 publisher
restriction(U someValuesFrom(D)) JU.D Jissue.integer
restriction(U allValuesFrom(D)) YU.D Vname.string
restriction(U hasValue(v)) U:v series : "LNCS"
restriction(U minCardinality(n)) (>nU) > 1 title

\ restriction(U maxCardinality(n)) (<nU) < 1 author

18
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Abstract Syntax

DL Syntax

Example \

Axioms

Class(A partial Cp... Cp)
Class(A complete Cp...Cy)

ACCin...nC,
A=Cin...Nnc,

Human L Animal M Biped

Man — Human [1 Male

EnumeratedClass(A 01 ...0p) A={o1}U...uU{on} | RGB={r} U {g} U {b}

SubClass0f(C1C2) Ci1 C Cs

EquivalentClasses(Cp...Ch) Ci=...=0C,

DisjointClasses(Cy ...Cy) C;nNC; =1,1# 3 Male L —Female

ObjectProperty(R super (Ri)... super (R,)) RC R; HasDaughter T hasChild
domain(C'y) ...domain(C},) (>1 R)CC; (> 1 hasChild) C Human
range(C'1) ...range(Cy) T EVR.D; T E VhasChild.Human
[inverseof(Rg)] R=R, hasChild = hasParent ™
[symmetric] R=R" similar = similar™
[functionall TC(L1R) T E (£ 1 hasMother)
[Inversefunctional] TCE(K1R™)
[Transitive] Tr(R) T'r(ancestor)

SubProperty0f (R R2) R1 C R

EquivalentProperties(R; ... R,) Ri=...=R, cost = price

\Annot ationProperty(S)

19
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Abstract Syntax DL Syntax Example

DatatypeProperty(U super (Up)... super (Uy)) UCU;

domain(C') ...domain(C},) (>1U) CC; (> 1 hasAge) C Human

range(D1) ...range(D,) T EVU.D; T C VhasAge.posInteger

[functional] TCE(L10) T C (< 1 hasAge)
SubProperty0f (U, Us) Ui C Us hasName C hasFirstName
EquivalentProperties(U; ... U,) Uy =...=U,
Individuals
Individual(o type (C1)... type (C,)) 0:C; tim:Human

value(Rj101) ...value(Ry,o0n) (0,0:):R; (tim, mary):hasChild

value(Ujvy) ...value(Upvy,) (0,v1):U; (tim, 14):hasAge
SameIndividual(oq ... o0n,) 01 =...=o0p president_Bush = G.W.Bush
DifferentIndividuals(oy ... 0y) 0; # 0,1 F# ] john # peter

o

/
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/XML representation of OWL statements

E.g., Person N VhasChild.(Doctor U FhasChild.Doctor):

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:allValuesFrom>
<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:someValuesFrom rdf:resource="#Doctor"/>
</owl:Restriction>
</owl:unionOf>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

o
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Fuzzy
Description Logics

Logic Programs

Description Logic Programs
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Objective

o

e To extend classical DLs and LPs towards the representation of and

reasoning with vague concepts
e To show some applications

e Development of practical reasoning algorithms

23




clarification \

Uncertainty theory: statements rather than being either true or false, are true or false
to some probability or possibility /necessity

— E.g., “It is possible that it will rain tomorrow”

— Usually we have a possible world semantics with a distribution over possible worlds:

W ={I classical interpretation} (I(¢) € {0,1})
p: W —[0,1] (u(I) € [0,1])
Imprecision theory: statements are true to some degree which is taken from a truth
space
— E.g., “Chinese items are cheap”
— Truth space: set of truth values L and an partial order <
— Many-valued Interpretation: a function I mapping formuale into L, i.e. I(¢) € L

— Fuzzy Logic: L = [0,1]

Uncertainty and imprecision theory: “It is possible that it will be hot tomorrow”

In this work we deal with imprecision and, thus, statements have a degree of truth. /

24



-~

Example (fuzzy DL-Lite, Current WOI‘k)

~

Hotel [  dhasLocation
Conference [  JhasLocation haslLocation | hasLocation | distance
Hotel [  —Conference i cli 300
Location? C  GISCoordinates hl1l cl2 500
distance” GISCoord X GISCoord — N h12 cl1 750
distance(x,y) = ... h12 cl2 750
close” N — [0, 1]
close(r) = max(0,1 — 1555)
HotelID | hasLocation ConferencelID | hasLocation HotelID | closeness degree
hi hl1 cl cli hil 0.7
h2 hl2 c2 cl2 h2 0.25

“Find a hotel close to conference c1”:
Hotel(h) AhasLocation(h, hl) AConference(cl) AhasLocation(cl, cl) Adistance(hl,cl,d) Nclose(d) =

Query(cl, h)

/
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Example (Logic-based information retrieval model)

media dependent properties media independent properties
i Object features: h'd Objact Semantics Layar K )
- color, shape, texture
- structure nnnpv is a dog
01 f 3““““ Birds and Dogs
IsAbout (0l, Snoopy)=.8 are anlmalsg
oodstock
02 ' Woodstock is a bird
\_ Object Form Layer I\ J
Bird L  Animal
Dog LC  Animal ImageRegion | Object ID isAbout
snoopy Dog ol snoopy 0.8
woodstock Bird 02 woodstock | 0.7

ImageRegion(ir) A isAbout(ir, ) A Animal(x) = Query(ir)

26




/Example (Graded Entailment) \

audi_tt mg ferrari_enzo
Car speed
audi_tt 243
mg < 170
ferrari_enzo | > 350
SportsCar =  Car Il JhasSpeed.very(High)

K = (ferrari_enzo:SportsCar, 1)

K [ (audi_tt:SportsCar, 0.92)

K = (audi_tt:—SportsCar, 0.72)

27
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Example (Graded Subsumption)

Minor = Personl1dhasAge. <ig

YoungPerson = Person[1JhasAge.Young

K &= (Minor C YoungPerson, 0.2)

Note: without an explicit membership function of Young, this inference cannot

be drawn

o /
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Example with fuzzy LPs (current work)

( Experience(John) «+ 0.7

F'= { Risk(John) — 0.5

| Sport_car(John) « 0.8

Good_driver(X) <« Experience(X) A —Risk(X)
R Risk(X) «— 0.8 Young(X)
Risk(X) «— 0.8 Sport_car(X)
| Risk(X) «— Experience(X) A =Good driver(X)

Then RU F' = (Risk(John), 0.64)

o

29



/Example (Distributed Information Retrieval) \

Query Q

Q12 Qn?
/QZ? Qr&\

IS1 I1S2 . ISn-1 ISn

Then the agent has to perform automatically the following steps:

1. the agent has to select a subset of relevant resources .’ C .¥, as it is not
reasonable to assume to access to and query all resources (resource

selection /resource discovery);

2. for every selected source S; € .’ the agent has to reformulate its information
need Q4 into the query language £, provided by the resource (schema
mapping/ontology alignment);

3. the results from the selected resources have to be merged together (data

K fusion/rank aggregation) /

30
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e Resource selection /resource discovery:

— Use techniques from Distributed Information Retrieval, e.g. CORI

e Schema mapping/ontology alignment:

— Use machine learning techniques, (implemented in oMap)

+ Learns automatically weighted rules, like (aligning Google- Yahoo
directories)
Mechanical_and_Aerospace_Engineering(d) «— 0.51 - Aeronautics_and_Astronautics(d)

e Data fusion/rank aggregation:

— Use techniques from Information Retrieval and/or Voting Systems,
e.g. CombMNZ or Borda count

o /
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Propositional Fuzzy Logics Basics

e Formulae: propositional formulae

e Truth space is [0, 1]

e Formulae have a a degree of truth in [0, 1]

e Interpretation: is a mapping I : Atoms — [0, 1]

e Interpretations are extended to formulae using norms to interpret connectives

32



negation

n(0) =1
a < b implies n(b) < n(a)

n(n(a)) = a

i-norm (implication)

t-norm (conjunction)

a < b implies i(a,c) > i(b, c)
b < c implies i(a,b) < i(a,c)

i1(0,b) =1
i(a,1) =1
Usually,

i(a,b) = sup{c: t(a,c) < b}

t(a,1) =a
b < c implies t(a,b) < t(a,c)
t(a,b) = t(b,a)
t(a,t(b,c)) = t(t(a,b),c)

~

s-norm (disjunction)

s(a,0) = a
b < ¢ implies s(a,b) < s(a,c)
s(a,b) = s(b,a)
s(a, s(b,c)) = s(s(a,b), c)

33
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Typical norms

Lukasiewicz Logic Godel Logic Product Logic Zadeh
if £ =0 then 1 if £ =0 then 1
- l—=x l—=x
else 0 else O
x Ay max(z +y — 1,0) min(x, y) x -y min(x, y)
xVy min(xz + y, 1) max(x, y) r+y—x-y max(x, y)
if £ <y then 1 if £ <y then 1 if £ <y then 1
T =y max(1l — z,y)
elsel —xz + vy else y else y/x

o

Note: for Lukasiewicz Logic

and Zadeh, z = y= -z Vy

34
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Fuzzy DLs Basics

e In classical DLs, a concept C' is interpreted by an interpretation Z as a set

of individuals
e In fuzzy DLs, a concept C' is interpreted by Z as a fuzzy set of individuals
e Fach individual is instance of a concept to a degree in [0, 1]

e Fach pair of individuals is instance of a role to a degree in |0, 1]

35




/ Fuzzy ALC concepts \

T t = t-norm
z = A
S p— S-1orm
Interpretation: ct . AT —[0,1] _
- . T n = negation
) = implication
Syntax Semantics
C,D — T ||| T (=) = 1
L] L% (x) = 0
A ||| AT (2) € [0,1]
Concepts: CcCnbD | (C1 1M CQ)I(QU) = t(Clz(ﬂU), C2I(x))
cubD ||| (CiuC)T(z) = s(Ci%(x),Co%(z))
=C ||| (=C)* () = n(C*(x))
JR.C | || GR.C)"(x) = sup,_ .7 t(R¥(z,y),CT(y))
VR.C (VR.C)E (u) = inf 7 i(RT(2,9),CT (y)}

Assertions: (a:C,n), T |= (a:C,n) iff C*(a®) > n (similarly for roles)
e individual a is instance of concept C at least to degree n, n € [0,1] N Q

Inclusion axioms: C L D,

K e I|=CELCDiff Ve € AT.C*(2) < D*(x), (alternative, Vo € A*.i(C* (z), D* (x)) = 1) /

36
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Basic Inference Problems

Consistency: Check if knowledge is meaningful

e Is IC consistent?
Subsumption: structure knowledge, compute taxonomy
e CECLCD?Y
Equivalence: check if two fuzzy concepts are the same
e CEC=D?7?
Graded instantiation: Check if individual a instance of class C to degree at least n
o = (a:C)n)?
BTVDB: Best Truth Value Bound problem
o glb(IC,a:C) =sup{n | K = {(a:C,n)} ?
Retrieval: Rank set of individuals that instantiate C' w.r.t. best truth value bound

e Rank the set R(IC,C) = {{a, glb(K,a:C))}

/

37



/Some Notes on ... \

e Value restrictions:
— In classical DLs, VR.C' = -dR.—C

— The same is not true, in general, in fuzzy DLs (depends on the operators’
semantics, not true in Godel logic).

VhasParent.Human # —JdhasParent.—Human 77

e Models:
— In classical DLs T C —=(VR.A) M (-3dR.—A) has no classical model

— In Godel logic it has no finite model, but has an infinite model

e The choice of the appropriate semantics of the logical connectives is important.
— Should have reasonable logical properties
— Certainly it must have efficient algorithms solving basic inference problems

e [ukasiewicz Logic seems the best compromise, though Zadeh semantics has
been considered historically in DLs (Zadeh semantics is not considered by fuzzy

\ logicians) /

38
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Towards fuzzy OWL Lite and OWL DL

e Recall that OWL Lite and OWL DL relate to SHZF (D) and SHOZN (D),

respectively

e We need to extend the semantics of fuzzy ALC to fuzzy
SHOIN (D) = ALCHOZINTR (D)

e Additionally, we add modifiers (e.g., very)

e Additionally, we add concrete fuzzy concepts (e.g., Young)

\_ /
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/Concrete fuzzy concepts

- D — <AD,(I)D>

— For instance,

e Use the idea of concrete domains:

— Ap is an interpretation domain

Minor

YoungPerson

e E.g., Small, Young, High, etc. with explicit membership function

— Py is the set of concrete fuzzy domain predicates d with a predefined
arity n = 1,2 and fixed interpretation d°: Ay — [0, 1]

Person [l JhasAge.<ig
Person [l JhasAge.Young

~

J
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Modifiers

e Very, moreOrLess, slightly, etc.

e Apply to fuzzy sets to change their membership function

— very(x) = 2°
— slightly(x) =z

e For instance,

SportsCar = Car [1dspeed.very(High)

o

41



/N umber Restrictions and Transitive roles

e The semantics of the concept (> n S)

z n
(2 n R) (aj) — Sup{yl,...,yn}gAI /\izl RI(aj) yz)

e Is the result of viewing (> n R) as the open first order formula

Hylaayn/\R(xay’L)/\ /\ yl#yj .

i=1 1<i<j<n
e The semantics of the concept (< n R)
(<n R)'(z) =-~(>n+1R)"(x)
e Note: (>1 R)=4dR.T

e For transitive roles R we impose: for all z,y € A%

R*(z,y) > sup min(R*(z,z2), R (2,y))
zeAZL

42
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Reasoning

e For full fuzzy SHOZN (D) or SHZF(D): does not exists yet

o Lixists for fuzzy ALC(D) + modifiers 4+ fuzzy concrete concepts
— Under Lukasiewicz semantics

— Under “Zadeh semantics” without GCI

e Exists for SHZN and Zadeh semantics (classical blocking methods apply

similarly in the fuzzy variant)

e On the way for GCI (both for Lukasiewicz Logic and Zadeh semantics)

\_ /
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/Basic decision algorithm

e There are:
— Translations of fuzzy DLs to classical DLs (not addressed here)

— Tableau algorithms similar to classical DL tableaux

e Most problems can be reduced to consistency check, e.g.
— Assertions are extended to (a:C > n), (a:C' < n), (a:C > n) and (a:C' < n)

— K E (a:C,n) iff LU {(a:C' < n)} not consistent
* All models of K do not satisfy (a:C < n), i.e. do satisfy (a:C > n)

e Let’s see a tableaux algorithm for consistency check, where

t(z,y) = min(z,y)

s(z,y) = max(z,y)

nx) = 1—=x

i(z,y) = s(n(z),y) =max(l —z,y)

44



ﬁI‘ableauX checking consistency of an ALC KB \

e Works on a tree forest (semantics through viewing tree as an ABox)
— Nodes represent elements of AZ, labelled with sub-concepts of C' and their weights
— Edges represent role-successorships between elements of AZ and their weights

e Works on concepts in negation normal form: push negation inside using de Morgan’

laws and

-(dR.C) +— VR.=C
-(VR.C) +— dR.-C
e It is initialised with a tree forest consisting of root nodes a, for all individuals
appearing in the KB:
— If (a:C'xan) € K then (C,<,n) € L(a)
— If ((a,b):R<x1n) € K then ({a,b),x,n) € E(R)

e A tree forest T' contains a clash if for a tree T" in the forest there is a node x in T,
containing a conjugated pair {(A,>,n),(C,<,m)} C L(z), e.g. (A, >,0.6), (A, <,0.3)

e Returns “K is consistent” if rules can be applied s.t. they yield a clash-free, complete

K (no more rules apply) tree forest /

45
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ALC Tableau rules (excerpt)

xe{(C1M1Co,>n),...} —n |z {{(C1MC2,>n),(C1,>,n),(Co,>n),...}
ze {(CLUC2,>,n),...} — 1 ze {(CLUC2,>n),(C,>n),...}
for C € {C1,C%}
ze {(IR.C,>,n),...} — 3 ze {(IR.C,>,n),...}
(R, >,n) |
ye{(C,>,n)}
re {(VR.C,>,n),...} —y ze {(VR.C,>,n),...}
(R,>m) | (m>1-n) (R,>,m) |
ye{...} ye{...,(C,>,n)}

\_ /
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éoundness and Completeness \

Theorem 1 Let K be an ALC KB and F obtained by applying the tableau rules to K. Then

1. The rule application terminates,

2. If F is clash-free and complete, then F' defines a (canonical) (tree forest) model for IC, and

3. If IC has a model Z, then the rules can be applied such that they yield a clash-free and
complete forest F'.

Corollary 1

1. The tableau algorithm is a PSPACE (using depth-first search) decision procedure for
consistency of ALC KBs.

2. ALC individuals have the tree-model property
The tableau can be modified to a decision procedure for
o SHIN (= ACCHINR.)

e TBox with acyclic concept definitions using lazy unfolding (unfolding on
demand)

K‘ For general inclusion axioms C' = D (on the way) /
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Problem with fuzzy tableau

e Usual fuzzy tableaux calculus does not work anymore with
— modifiers and concrete fuzzy concepts

— Lukasiewicz Logic
e Usual fuzzy tableaux calculus does not solve the BTVB problem

e New algorithm uses bounded Mixed Integer Programming oracle, as for

Many Valued Logics
— Recall: the general MILP problem is to find

xcQFyezm
f(X,y) =min{f(x,y): Ax+ By > h}

A, B integer matrixes
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/Requirements \

e Works for usual fuzzy DL semantics (Zadeh semantics) and Lukasiewicz logic

e Modifiers are definable as linear in-equations over Q,Z (e.g., linear hedges), for
instance, linear hedges, Im(a,b), e.g. very = 1m(0.7, 0.49)

e Fuzzy concrete concepts are definable as linear in-equations over QQ,Z (e.g., crisp,
triangular, trapezoidal, left shoulder and right shoulder membership functions)

T bm————————

tri(a,b,c)

F o o T —
O b—————————
F o N e ——

a

\ trz(a,b,c,d) Is(a,b) rs(a,b,c) /
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/ e Example:

Minor = Person 1 JhasAge. <ig
YoungPerson = Personl1JdhasAge.Young
Young = 1s(10,30)
§18 — CI‘(O, 18)
e Then
glb(IC,a:C) = min{z | LU {(a:C < z) satisfiable}
glb(K,CC D) = min{z | KU {{(a:CT1-D > 1 — x) satisfiable}

— Apply tableaux calculus (without non-deterministic branches), then

\ use bounded Mixed Integer Programming oracle
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LC Tableau rules (excerpt)

~

xe{(CiMCq,>,1),...} —n xo{(C1MCq,>,1),(C,>,01),(Cs,>,1),...}
xe {(C1UCq,>,1),...} —0 ze{(C1UCo,>,1),(C1,>,x1),(Cs, >, x2),
z1+x2 =l,z1 Sy,z2 <1 —y,
x; € [0,1],y € {0,1},...}
xe {(IR.C,>,1),...} —3 xe {(IR.C,>,1),...}
(R, >,1) |
ye{(C,>,1)}
xe {(VR.C,>,l1),...} —y ze {(VR.C,>,l1),...}
(R, >,12) | (R, >,12) |
ye{...} ye{...,(C, > x)
r+y >,z <yl +1l2<2—y,
x € [0,1],y € {0,1}}
re {ACC, (A >,1),...} —c, | e {ALCC(C,>1),...}
xe{CLC A (A<, ),...} 5 | Te{C E A (C,<1),...}

N
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Example

AMNBLCC
K = (a:A > 0.3)
e Suppose (a:B > 0.4)
Query : = glb(K,a:C) = min{x | KU {(a:C < z) satisfiable}
Step | Tree
1. ae {(A, >,0.3),(B,>,04),(C,<,z)} (Hypothesis)
2. U{{AN B, <,z)} (—es)
3. U{<A,S,QZ1>,<B,§,CE2>} (_>ﬂ§)

U{z=z1+22 - 1,1 -y <z1,y <22}
U{z: € [0,1],y € {0,1}}

4. find min{x | (a:A > 0.3), (a:B > 0.4), (MILP Oracle)
(a:C < z),{(a:A < z1), (a:B < x3),
r=x1+x2— 11—y < a1,y < 22,
zi € 10,1,y € {0,1}}

5. MILP oracle: x = 0.3
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Implementation issues

e Several options exists:

— Try to map fuzzy DLs to classical DLs

x but, does not work with modifiers and concrete fuzzy concepts

— Try to map fuzzy DLs to some fuzzy logic programming framework

x A lot of work exists about mappings among classical DLs and LPs
* But, needs a theorem prover for fuzzy LPs (see next part)

x To be used then e.g. in the axiomatic approach to fuzzy DLPs

— Build an ad-hoc theorem prover for fuzzy DLs, using e.g., MILP

x To be used then separately e.g. in the DL-log approach to fuzzy
DLPs

e A theorem prover for fuzzy ALC + linear hedges + concrete fuzzy
concepts, using MILP, has been implemented

o
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Future Work on fuzzy DLs

e Research directions:
— Computational complexity of the fuzzy DLs family
— Design of efficient reasoning algorithms
— Combining fuzzy DLs with Logic Programming

— Language extensions: e.g. fuzzy quantifiers

TopCustomer = Customer [ (Usually)buys.Expensiveltem

Expensiveltem = Item 1 dprice.High

— Developing a system
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/Fuzzy LPs Basics \

e Many Logic Programming (LP) frameworks have been proposed to manage
uncertain and imprecise information. They differ in:

— The underlying notion of uncertainty and imprecision: probability,
possibility, many-valued, fuzzy sets

— How values, associated to rules and facts, are managed

e We consider fuzzy LPs, where
— Truth space is [0, 1]g
— Interpretation is a mapping I : Bp — [0, 1]g

— Generalized LP rules are of the form
f(A,...,A,) = A

x A and A; atoms and f total, monotone, finite-time computable function
f:10,1]g — [0,1]g
+x Meaning of rules: take the truth-values of A;,...A,,, combine them using

K the function f, and assign the result to A /
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Example

min( Location(hotel, hotelLocation),
Distance(hotelLocation, buisinessLocation, distance),

Close(distance)

—> NearTo(businessLocation, hotel)

where Close(x) = max (0,1 — x/1000).

o
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Semantics of fuzzy LPs

e Model of a LP: I =P iff I =r, for all r € P*, where
T f(An. . Ag) = A F(I(AY), . I(A,)) < T(A)

e [east model exists and is least fixed-point of

for all p = A € P*

e Note: Extension to fuzzy Normal Logic Programs exists, as well as a

query answering procedure. However, we will not deal with that here.

o

57



-~

Query answering for fuzzy LPs

e Given a logic program P, given a query atom A,
— compute the minimal model I of P (bottom-up, using Tp)

— answer with I(A)

e Problems:
— Least model can be very huge

— You do not need to compute the whole least model I of P to answer
with I(A), e.g.
* P={B = A,1= B}UP’, where A does not appear in P’
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/A general top-down query procedure for fuzzy LPs \

e Idea: use theory of fixed-point computation of equational systems over [0, 1]g
e Assign a variable x; to an atom A; € Bp
e Map a rule f(A1,...,An) = A € P* into the equation z4 = f(za,,...,TA4,,)

e A LP P is thus mapped into the equational system

(
L1 — fl(xlla'”axlal)

L ajn — fn(ajnl,...7xnan)

e f, is monotone and, thus, the system has least fixed-point, which is the limit of
Yo = 0

yit1 = f(y:).

where f = (f1,..., fn) and f(x) = (f1(x1),..., fn(zn))
e The least-fixed point is the least model of P

e Comnsequence: If top-down procedure exists for equational systems then it works for fuzzy

\ LPs too! /
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A o

Procedure Solve(S, Q)
Input: monotonic system & = (£, V,f), where @ C V is the set of query variables;
Output: A set B C V, with Q C B such that the mapping v equals lfp(f) on B.
A: =Q,dg: =Q,in: =0, for all x € V do v(x) =0, exp(z) =0
while A # () do
select z; € A A: = A\{x;}, dg: =dgUs(z;)
roo= fi(v(@ig), - v(@i,, )
if r > v(z;) then v(z;): =r, A: =AU (p(x;) Ndg) fi
if not exp(x;) then exp(z;) =1, A: =AU (s(x;) \ in), in: = inUs(z;) fi
od

/
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otk W

o

e Set of facts 0.7 = Experience(john), 0.5 = Risk(john), 0.8 = Sport_car(john)

e Set of rules, which after grounding are:

Experience(john) A (0.5 - Risk(john)) =  Good_driver(john)
0.8 - Young(john) =  Risk(john)
0.8 - Sport_car(john) =  Risk(john)
Experience(john) A (0.5 - Good_driver(john)) = Risk(john)

A =A{ary) b zit = (g, A =0,dg: = {Zry), Tv(g), Ts(3)s TeG) s Te) tH> 70 = 0.5, v(ar(y)): =

A: = A{zey) b exp(arg)): =1, A: = {@v(y), Ts(j)» Te(y)» Te(3) 1> in: = {@y(y), Ts(y)» Te(3)» Ta(y)

i = Tyy), A = {Ts(5), Te(y)> Tay) b T = 0,exp(zy(y)): =1

~

0.5,

rq: — a:s(j),A: = {.’JJE(j),.’BG(j)},T‘: = O.8,V($S(j)): = O.8,A: = {a:E(j),xG(j),mR(j)},eXp(a:S(j)): =1

Ti: = Tgey), A = {Zgy), Taei) br T = 0.7, v(xg5)): = 0.7, exp(xgy)): =1
T = Tgy), A = {xry) }, 7 = 0.25,v(xg5)): = 0.25,exp(wg3)): =1,
in: = {Zy(j), Ts(§)» TE(3)> Te(3)s Tr(j) }

T = xRy, A =0,r: =0.64,v(xpy)): = 0.64,A: = {zg(5)}

Ti: = xgy), A =0,r: = 0.32,v(xg5)): = 0.32,A: = {xp(y)}

T = Tg(y),A: =0,r: =0.64

stop. return v (in particular, v(zg;)) = 0.64)
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/ Future Work on fuzzy LPs \

e Research directions:

— Developing a system for fuzzy LPs (i.e. implement the top-down

algorithm, e.g. use lparse for grounding)

— Mapping between fuzzy OWL Lite and fuzzy LPs (I guess they are in the

same complexity class)

x Problem: membership functions of concrete concepts are not

necessarily monotone

x A MILP oracle in fuzzy LPs may be needed

— More general equations: from x = f(x1,...,xn) to e.g.
Ti1V...VZik = f(ib'l, ey xn)

to accommodate disjunctive fuzzy LPs

\ — Mapping between fuzzy OWL DL and fuzzy disjunctive LPs /
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Fuzzy DLPs Basics

o

e Combine fuzzy DLs with fuzzy LPs:

— DL atoms and roles may appear in rules

min(made_by(x,y), (ChineseCarCompany)(y)), prize(x, z) = LowCarPrize(z)

LowCarPrize(z) = 1s(5.000, 15.000)

ChineseCarCompany L Jhas_location.China

e Knowledge Base is a pair KB = (P, X)), where
— P is a fuzzy logic program

— X is a fuzzy DL knowledge base (set of assertions and inclusion axioms)

/
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Fuzzy DLPs Semantics

e Semantics: two main approaches

1. Axiomatic approach: fuzzy DL atoms and roles are managed
uniformely
— I'isamodel of KB= (P, %) if I[P and I X
2. DL-log approach: fuzzy DL atoms and roles are procedural
attachments (calls to a fuzzy DL theorem prover)
— Iis amodel of KB = (P, X)) iff [* =P
— I*(A) = I(A) for all ground non-DL atoms A
— I*({A)(a)) = gIb(3,a:A) for all ground DL atoms (A)(a)
— I*((R)(a, b)) = glb(X, (a,b):R) for all ground DL roles (R)(a,b)

e DL-log has the minimal model property of fuzzy LPs and a fixed-point
characterization: Tp(I)(A) = I*(p), for ¢ = A € P*

o
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A top-down procedure for the DL-log approach

e Combine Solve(S, Q)) with a theorem prover for fuzzy DLs

— Modify Step 1. of algorithm Solve(S, Q)

+ for all x;; DL-atoms (A)(a) (similarly for roles)
- compute T;, = glb(KC, a:A)

- set v(w;,) = T;,, instead of v(x;,) =0

e Lissentially, for all DL-atoms (A)(a) we compute off-line glb(KC, a:A) and
add then the rule A(a) « glb(K,a:A) to P

e A solution for the axiomatic approach is not known yet

\_ /
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Conclusions

e Fuzzy DLs, fuzzy LPs and fuzzy DLPs allow to deal with imprecise

concepts
— Formulae have a degree of truth
— Explicit membership functions are allowed

e We shown some applications of these languages and reasoning

procedures

66




