A General Framework for Representing and Reasoning with Annotated Semantic Web Data

Umberto Straccia
ISTI-CNR
Pisa, Italy

Nuno Lopes, Gergely Lukácsy, and Axel Polleres
Digital Enterprise Research Institute
National University of Ireland, Galway
Introduction

- RDFS is both a logic and standard W3C Semantic Web Language
 - basic ingredient: triples \((subject, predicate, object)\)
- But triples alone are often not enough . . .
- RDFS statements are true with respect to a certain domain
 - Time
 - \((umberto, workedFor, ISTI)\)
 - true since 2001
 - Vagueness
 - \((AAAI10Hotel, closeTo, OlympicPark)\)
 - true to some degree
 - Provenance
 - \((umberto, knows, axel)\)
 - true in \url{http://www.straccia.info/foaf.rdf}
RDFS variants are emerging including some specific domains such as
 - time, fuzziness, provenance, ...

Our contribution:
 - A very general framework for annotating RDFS triples
 - A deductive system, which straightforwardly extends the one for classical RDFS
 - Implementation is simple
 - Crisp RDF is a special case
 - Backward compatibility is guaranteed
 - Computational complexity and scalability: as for crisp RDFS
 - ... if domain computations are not too expensive
Outline

- Annotated RDF
- Query answering
- Summary & Outlook
From RDFS to Annotated RDFS
RDFS Syntax

- Pairwise disjoint alphabets
 - \(U \) (RDF URI references)
 - \(B \) (Blank nodes)
 - \(L \) (Literals)
- For simplicity we will denote unions of these sets simply concatenating their names
- We call elements in **UBL terms** (denoted \(t \))
- We call elements in **B variables** (denoted \(x \))
RDF triple (or RDF atom):

\[(s, p, o) \in \text{UBL} \times \text{U} \times \text{UBL}\]

- s is the subject
- p is the predicate
- o is the object

Example:

\[(\text{umberto}, \text{workedFor}, \text{IEI})\]
ρdf (restricted RDFS) [Munoz et al., 2007]

- ρdf (read rho-df, the ρ from restricted rdf)
- ρdf is defined as the following subset of the RDFS vocabulary:
 \[\rho df = \{ sp, sc, type, dom, range \} \]
- \((p, sp, q)\)
 - property \(p\) is a sub property of property \(q\)
- \((c, sc, d)\)
 - class \(c\) is a sub class of class \(d\)
- \((a, type, b)\)
 - \(a\) is of type \(b\)
- \((p, dom, c)\)
 - domain of property \(p\) is \(c\)
- \((p, range, c)\)
 - range of property \(p\) is \(c\)
Graph (or Knowledge Base) is a set of triples \mathcal{T}.

The universe of a graph G, denoted by $\text{universe}(G)$, is the set of elements in UBL that occur in the triples of G.

The vocabulary of G, denoted by $\text{voc}(G)$ is the set $\text{universe}(G) \cap \text{UL}$.

A graph is ground if it has no blank nodes (i.e. variables).
Annotated RDFS: Syntax

- Statement (triples) may have attached a value λ taken from an **Annotation Domain**

 \[(s, p, o): \lambda\]

- For instance,

 \[(umberto, workedFor, IEI): [1992, 2001]\]

 \[(AAA10Hotel, closeTo, OlimpicPark): 0.8\]

 \[(umberto, knows, axel): \text{http://www.straccia.info/foaf.rdf}\]
Annotated RDFS: Semantics

- What do annotations mean for RDFS semantics?
- How do I combine, annotated triples semantically?

\[(\text{umberto}, \text{type}, \text{IEIEmployee}) : [1992, 2001]\]
\[(\text{IEIEmployee}, \text{sc}, \text{PisaCenterEmployee}) : [1968, 2000]\]
\[(\text{umberto}, \text{type}, \text{PisaCenterEmployee}) : [?, ?]\]
Annotation Domains: Informally

Illustration by Example: Time

- An *Annotation Domain* consists of
 - A lattice L of annotation values
 - *e.g.* $[1968, 2000]$ and $\{[1968, 2000], [2003, 2004]\}$
 - An order between elements:
 - if $\lambda \preceq \lambda'$, then $\tau: \lambda$ is true to a lesser extent than $\tau': \lambda'$
 - *e.g.* $[1968, 2000] \preceq [1952, 2007]$ (\preceq is \subseteq)
 - Top and bottom elements:
 - $\top = [\pm \infty, +\infty], \bot = \emptyset$
 - “Conjunction” function \otimes
 - $[1992, 2001] \otimes [1968, 2000] = [1992, 2000]$ (\otimes is \cap)
 - “Combination” function \vee
Annotation Domains: Informally

Illustration by Example: Time

- An Annotation Domain consists of
 - A lattice L of annotation values
 - e.g. $[1968, 2000]$ and $\{[1968, 2000], [2003, 2004]\}$
 - An order between elements:
 - if $\lambda \preceq \lambda'$, then $\tau: \lambda$ is true to a lesser extent than $\tau': \lambda'$
 - e.g. $[1968, 2000] \preceq [1952, 2007]$ (\preceq is \subseteq)
 - Top and bottom elements:
 - $\top = [-\infty, +\infty], \bot = \emptyset$
 - “Conjunction” function \otimes
 - $[1992, 2001] \otimes [1968, 2000] = [1992, 2000]$ (\otimes is \cap)
 - “Combination” function \lor
Annotation Domains: Informally

Illustration by Example: Time

- An *Annotation Domain* consists of
 - A lattice L of annotation values
 - e.g. [1968, 2000] and \{[1968, 2000], [2003, 2004]\}
 - An order between elements:
 - if $\lambda \preceq \lambda'$, then $\tau: \lambda$ is true to a lesser extent than $\tau': \lambda'$
 - e.g. [1968, 2000] \preceq [1952, 2007] (\preceq is \subseteq)
 - Top and bottom elements:
 - $\top = [-\infty, +\infty]$, $\bot = \emptyset$
 - “Conjunction” function \otimes
 - [1992, 2001] \otimes [1968, 2000] = [1992, 2000] (\otimes is \cap)
 - “Combination” function \lor
Annotation Domains: Informally

Illustration by Example: Time

▶ An Annotation Domain consists of

▶ A lattice L of annotation values
 ▶ e.g. $[1968, 2000]$ and $\{[1968, 2000], [2003, 2004]\}$

▶ An order between elements:
 ▶ if $\lambda \preceq \lambda'$, then $\tau: \lambda$ is true to a lesser extent than $\tau': \lambda'$
 ▶ e.g. $[1968, 2000] \preceq [1952, 2007]$ (\preceq is \subseteq)

▶ Top and bottom elements:
 ▶ $\top = [-\infty, +\infty], \bot = \emptyset$

▶ “Conjunction” function \otimes
 ▶ $[1992, 2001] \otimes [1968, 2000] = [1992, 2000]$ (\otimes is \cap)

▶ “Combination” function \vee
Annotation Domains: Informally

Illustration by Example: Time

- An **Annotation Domain** consists of:
 - A lattice L of annotation values
 - *e.g.* $[1968, 2000]$ and $\{[1968, 2000], [2003, 2004]\}$
 - An order between elements:
 - if $\lambda \preceq \lambda'$, then $\tau: \lambda$ is true to a lesser extent than $\tau': \lambda'$
 - *e.g.* $[1968, 2000] \preceq [1952, 2007]$ (\preceq is \subseteq)
 - Top and bottom elements:
 - $\top = [-\infty, +\infty], \bot = \emptyset$
 - “Conjunction” function \otimes
 - $[1992, 2001] \otimes [1968, 2000] = [1992, 2000]$ (\otimes is \cap)
 - “Combination” function \lor
An annotation domain is an algebraic structure that is well-known for Many-Valued FOL

Annotation Domain: is a *residuated bounded lattice*

\[D = \langle L, \preceq, \land, \lor, \otimes, \Rightarrow, \bot, \top \rangle, \]

i.e.

1. \(\langle L, \preceq, \land, \lor, \bot, \top \rangle \) is a bounded lattice, where \(\bot \) and \(\top \) are bottom and top elements, \(\land \) and \(\lor \) are the meet and join operators;
2. \(\langle L, \otimes, \top \rangle \) is a commutative monoid;
3. \(\Rightarrow \) is the so-called residuum implication of \(\otimes \), i.e. for all \(x, y, z \),

\[z \preceq (x \Rightarrow y) \iff x \otimes z \preceq y. \]

Remark: \(x \Rightarrow y = \sup \{ z \mid x \otimes z \preceq y \} \)
Annotation Domain (Formally)

- An annotation domain is an algebraic structure that is well-known for Many-Valued FOL
- **Annotation Domain**: is a *residuated bounded lattice*

\[D = \langle L, \preceq, \wedge, \vee, \otimes, \Rightarrow, \bot, \top \rangle, \]

i.e.

1. \(\langle L, \preceq, \wedge, \vee, \bot, \top \rangle \) is a bounded lattice, where \(\bot \) and \(\top \) are bottom and top elements, \(\wedge \) and \(\vee \) are the meet and join operators;
2. \(\langle L, \otimes, \top \rangle \) is a commutative monoid;
3. \(\Rightarrow \) is the so-called residuum implication of \(\otimes \), i.e. for all \(x, y, z \),

\[z \preceq (x \Rightarrow y) \iff x \otimes z \preceq y. \]

Remark: \(x \Rightarrow y = \sup \{z \mid x \otimes z \preceq y\} \)
Annotation Domain (Formally)

- An annotation domain is an algebraic structure that is well-known for Many-Valued FOL
- **Annotation Domain**: is a *residuated bounded lattice*

\[
D = \langle L, \preceq, \land, \lor, \otimes, \Rightarrow, \bot, \top \rangle,
\]

i.e.

1. \(\langle L, \preceq, \land, \lor, \bot, \top \rangle\) is a bounded lattice, where \(\bot\) and \(\top\) are bottom and top elements, \(\land\) and \(\lor\) are the meet and join operators;
2. \(\langle L, \otimes, \top \rangle\) is a commutative monoid;
3. \(\Rightarrow\) is the so-called residuum implication of \(\otimes\), *i.e.* for all \(x, y, z\),

\[
z \preceq (x \Rightarrow y) \iff x \otimes z \preceq y.
\]

Remark: \(x \Rightarrow y = \operatorname{sup} \{z \mid x \otimes z \preceq y\}\)
Other domains: Example

- **Fuzzy:** \((\text{AAAI10Hotel, closeTo, OlimpicPark}): 0.8\)
 - \(L = [0, 1]\)
 - \(\otimes = \text{any t-norm}\)
 - \(\lor = \text{max}\)

- **Provenance:** \((\text{umberto, knows, axel}): p\)
 - \(L = \text{DNF propositional formulae over URIs}\)
 - \(\otimes = \land\)
 - \(\lor = \lor\)

- **Multiple Domains:** our frameworks allows to combine domains
 \((\text{CountryXXX, type, Dangerous}): ⟨[1975, 1983], 0.8, 0.6⟩\)

Time \(\times\) Fuzzy \(\times\) Trust
Other domains: Example

- **Fuzzy**:
 \[(AAA\!10Hotel, closeTo, OlimpicPark) : 0.8\]
 \[
 L = [0, 1] \\
 \otimes = \text{any t-norm} \\
 \lor = \max
 \]

- **Provenance**:
 \[(umberto, knows, axel) : p\]
 \[
 L = \text{DNF propositional formulae over URIs} \\
 \otimes = \land \\
 \lor = \lor
 \]

- **Multiple Domains**: our frameworks allows to combine domains
 \[(CountryXXX, type, Dangerous) : \langle [1975, 1983], 0.8, 0.6 \rangle\]

Time \times Fuzzy \times Trust
Other domains: Example

- **Fuzzy**: $(\text{AAAI10Hotel, closeTo, OlimpicPark}): 0.8$
 - $L = [0, 1]$
 - $\otimes =$ any t-norm
 - $\lor = \max$

- **Provenance**: $(\text{umberto, knows, axel}): p$
 - $L =$ DNF propositional formulae over URIs
 - $\otimes = \land$
 - $\lor = \lor$

- **Multiple Domains**: our frameworks allows to combine domains
 - $(\text{CountryXXX, type, Dangerous}): \langle [1975, 1983], 0.8, 0.6 \rangle$

$Time \times Fuzzy \times Trust$
Semantics generalises that of crisp RDFS

Annotated RDF interpretation \mathcal{I} over a vocabulary V is a tuple

$$\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot \mathcal{I} \rangle,$$

where

- $\Delta_R, \Delta_P, \Delta_C, \Delta_L$ are the finite interpretations domains of \mathcal{I}
- $P[\cdot], C[\cdot], \cdot \mathcal{I}$ are the interpretation functions of \mathcal{I}
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot^\mathcal{I} \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R \) is a nonempty set of resources, called the domain or universe of \(\mathcal{I} \)
2. \(\Delta_P \) is a set of property names (not necessarily disjoint from \(\Delta_R \))
3. \(\Delta_C \subseteq \Delta_R \) is a distinguished subset of \(\Delta_R \) identifying if a resource denotes a class of resources
4. \(\Delta_L \subseteq \Delta_R \), a set of literal values, \(\Delta_L \) contains all plain literals in \(\mathbb{L} \cap \mathbb{V} \)
5. \(\cdot^\mathcal{I} \) maps each \(t \in \mathbb{UL} \cap \mathbb{V} \) into a value \(t^\mathcal{I} \in \Delta_R \cup \Delta_P \), i.e. assigns a resource or a property name to each element of \(\mathbb{UL} \) in \(\mathbb{V} \), and such that \(\cdot^\mathcal{I} \) is the identity for plain literals and assigns an element in \(\Delta_R \) to elements in \(\mathbb{L} \)
6. \(\cdot^\mathcal{I} \) maps each variable \(x \in \mathbb{B} \) into a value \(x^\mathcal{I} \in \Delta_R \), i.e. assigns a resource to each variable in \(\mathbb{B} \)
7. What are \(P[\cdot] \) and \(C[\cdot] \)?
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R\) is a nonempty set of resources, called the domain or universe of \(\mathcal{I}\)

2. \(\Delta_P\) is a set of property names (not necessarily disjoint from \(\Delta_R\))

3. \(\Delta_C \subseteq \Delta_R\) is a distinguished subset of \(\Delta_R\) identifying if a resource denotes a class of resources

4. \(\Delta_L \subseteq \Delta_R\), a set of literal values, \(\Delta_L\) contains all plain literals in \(L \cap V\)

5. \(\cdot\) maps each \(t \in UL \cap V\) into a value \(t^\mathcal{I} \in \Delta_R \cup \Delta_P\), i.e. assigns a resource or a property name to each element of \(UL\) in \(V\), and such that \(\cdot\) is the identity for plain literals and assigns an element in \(\Delta_R\) to elements in \(L\)

6. \(\cdot\) maps each variable \(x \in B\) into a value \(x^\mathcal{I} \in \Delta_R\), i.e. assigns a resource to each variable in \(B\)

7. What are \(P[\cdot]\) and \(C[\cdot]\)?
\[
\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot \mathcal{I} \rangle
\]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R\) is a nonempty set of resources, called the domain or universe of \(\mathcal{I}\)
2. \(\Delta_P\) is a set of property names (not necessarily disjoint from \(\Delta_R\))
3. \(\Delta_C \subseteq \Delta_R\) is a distinguished subset of \(\Delta_R\) identifying if a resource denotes a class of resources
4. \(\Delta_L \subseteq \Delta_R\), a set of literal values, \(\Delta_L\) contains all plain literals in \(L \cap V\)
5. \(\cdot \mathcal{I}\) maps each \(t \in UL \cap V\) into a value \(t^\mathcal{I} \in \Delta_R \cup \Delta_P\), i.e. assigns a resource or a property name to each element of \(UL\) in \(V\), and such that \(\cdot \mathcal{I}\) is the identity for plain literals and assigns an element in \(\Delta_R\) to elements in \(L\)
6. \(\cdot \mathcal{I}\) maps each variable \(x \in B\) into a value \(x^\mathcal{I} \in \Delta_R\), i.e. assigns a resource to each variable in \(B\)
7. What are \(P[\cdot]\) and \(C[\cdot]\)?
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot^\mathcal{I} \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R \) is a nonempty set of resources, called the domain or universe of \(\mathcal{I} \)
2. \(\Delta_P \) is a set of property names (not necessarily disjoint from \(\Delta_R \))
3. \(\Delta_C \subseteq \Delta_R \) is a distinguished subset of \(\Delta_R \) identifying if a resource denotes a class of resources
4. \(\Delta_L \subseteq \Delta_R \), a set of literal values, \(\Delta_L \) contains all plain literals in \(L \cap V \)
5. \(\cdot^\mathcal{I} \) maps each \(t \in UL \cap V \) into a value \(t^\mathcal{I} \in \Delta_R \cup \Delta_P \), i.e. assigns a resource or a property name to each element of \(UL \) in \(V \), and such that \(\cdot^\mathcal{I} \) is the identity for plain literals and assigns an element in \(\Delta_R \) to elements in \(L \)
6. \(\cdot^\mathcal{I} \) maps each variable \(x \in B \) into a value \(x^\mathcal{I} \in \Delta_R \), i.e. assigns a resource to each variable in \(B \)
7. What are \(P[\cdot] \) and \(C[\cdot] \)?
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \mathcal{I} \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. Δ_R is a nonempty set of resources, called the domain or universe of \mathcal{I}
2. Δ_P is a set of property names (not necessarily disjoint from Δ_R)
3. $\Delta_C \subseteq \Delta_R$ is a distinguished subset of Δ_R identifying if a resource denotes a class of resources
4. $\Delta_L \subseteq \Delta_R$, a set of literal values, Δ_L contains all plain literals in $L \cap V$
5. $\cdot^\mathcal{I}$ maps each $t \in UL \cap V$ into a value $t^\mathcal{I} \in \Delta_R \cup \Delta_P$, i.e. assigns a resource or a property name to each element of UL in V, and such that $\cdot^\mathcal{I}$ is the identity for plain literals and assigns an element in Δ_R to elements in L
6. $\cdot^\mathcal{I}$ maps each variable $x \in B$ into a value $x^\mathcal{I} \in \Delta_R$, i.e. assigns a resource to each variable in B
7. What are $P[\cdot]$ and $C[\cdot]$?
\[I = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot I \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R \) is a nonempty set of resources, called the domain or universe of \(I \)
2. \(\Delta_P \) is a set of property names (not necessarily disjoint from \(\Delta_R \))
3. \(\Delta_C \subseteq \Delta_R \) is a distinguished subset of \(\Delta_R \) identifying if a resource denotes a class of resources
4. \(\Delta_L \subseteq \Delta_R \), a set of literal values, \(\Delta_L \) contains all plain literals in \(L \cap V \)
5. \(\cdot I \) maps each \(t \in UL \cap V \) into a value \(t^I \in \Delta_R \cup \Delta_P \), i.e. assigns a resource or a property name to each element of \(UL \) in \(V \), and such that \(\cdot I \) is the identity for plain literals and assigns an element in \(\Delta_R \) to elements in \(L \)
6. \(\cdot I \) maps each variable \(x \in B \) into a value \(x^I \in \Delta_R \), i.e. assigns a resource to each variable in \(B \)
7. What are \(P[\cdot] \) and \(C[\cdot] \)?
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot^\mathcal{I} \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R \) is a nonempty set of resources, called the domain or universe of \(\mathcal{I} \)
2. \(\Delta_P \) is a set of property names (not necessarily disjoint from \(\Delta_R \))
3. \(\Delta_C \subseteq \Delta_R \) is a distinguished subset of \(\Delta_R \) identifying if a resource denotes a class of resources
4. \(\Delta_L \subseteq \Delta_R \), a set of literal values, \(\Delta_L \) contains all plain literals in \(L \cap V \)
5. \(\cdot^\mathcal{I} \) maps each \(t \in UL \cap V \) into a value \(t^\mathcal{I} \in \Delta_R \cup \Delta_P \), i.e. assigns a resource or a property name to each element of \(UL \) in \(V \), and such that \(\cdot^\mathcal{I} \) is the identity for plain literals and assigns an element in \(\Delta_R \) to elements in \(L \)
6. \(\cdot^\mathcal{I} \) maps each variable \(x \in B \) into a value \(x^\mathcal{I} \in \Delta_R \), i.e. assigns a resource to each variable in \(B \)
7. What are \(P[\cdot] \) and \(C[\cdot] \) ?
Crisp $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a subset $P[p] \subseteq \Delta_R \times \Delta_R$, i.e. assigns an extension to each property name; i.e.

$$P[p] : \Delta_R \times \Delta_R \rightarrow \{0, 1\}$$

Annotated $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a function $P[p] : \Delta_R \times \Delta_R \rightarrow L$, i.e. assigns an annotation term to each pair of resources;

Crisp $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a subset $C[c] \subseteq \Delta_R$, i.e. assigns a set of resources to every resource denoting a class; i.e.

$$C[c] : \Delta_R \rightarrow \{0, 1\}$$

Annotated $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a function $C[c] : \Delta_R \rightarrow L$, i.e. assigns an annotation term to every resource
Crisp $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a subset $P[p] \subseteq \Delta_R \times \Delta_R$, i.e. assigns an extension to each property name; i.e.

$$P[p] : \Delta_R \times \Delta_R \rightarrow \{0, 1\}$$

Annotated $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a function $P[p] : \Delta_R \times \Delta_R \rightarrow L$, i.e. assigns an annotation term to each pair of resources;

Crisp $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a subset $C[c] \subseteq \Delta_R$, i.e. assigns a set of resources to every resource denoting a class; i.e.

$$C[c] : \Delta_R \rightarrow \{0, 1\}$$

Annotated $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a function $C[c] : \Delta_R \rightarrow L$, i.e. assigns an annotation term to every resource
Crisp $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a subset $P[p] \subseteq \Delta_R \times \Delta_R$, i.e. assigns an extension to each property name; i.e.

$$P[p] : \Delta_R \times \Delta_R \rightarrow \{0, 1\}$$

Annotated $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a function $P[p] : \Delta_R \times \Delta_R \rightarrow L$, i.e. assigns an annotation term to each pair of resources;

Crisp $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a subset $C[c] \subseteq \Delta_R$, i.e. assigns a set of resources to every resource denoting a class; i.e.

$$C[c] : \Delta_R \rightarrow \{0, 1\}$$

Annotated $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a function $C[c] : \Delta_R \rightarrow L$, i.e. assigns an annotation term to every resource.
Crisp $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a subset $P[p] \subseteq \Delta_R \times \Delta_R$, i.e. assigns an extension to each property name; i.e.

$$P[p] : \Delta_R \times \Delta_R \rightarrow \{0, 1\}$$

Annotated $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a function $P[p] : \Delta_R \times \Delta_R \rightarrow L$, i.e. assigns an annotation term to each pair of resources;

Crisp $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a subset $C[c] \subseteq \Delta_R$, i.e. assigns a set of resources to every resource denoting a class; i.e.

$$C[c] : \Delta_R \rightarrow \{0, 1\}$$

Annotated $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a function $C[c] : \Delta_R \rightarrow L$, i.e. assigns an annotation term to every resource
Models (Intuitively)

Crisp RDFS : For ground triples, $\mathcal{I} \models (s, p, o)$ if

- p is interpreted as a property name
- s and o are interpreted as resources
- the interpretation of the pair (s, o) belongs to the extension of the property assigned to p

Annotated RDF : For ground triples, $\mathcal{I} \models (s, p, o) : \lambda$ if

- p is interpreted as a property name
- s and o are interpreted as resources
- the interpretation of the pair (s, o) belongs to the extension of the property assigned to p to a wider extent than λ
Models (Intuitively)

Crisp RDFS : For ground triples, $\mathcal{I} \models (s, p, o)$ if
- p is interpreted as a property name
- s and o are interpreted as resources
- the interpretation of the pair (s, o) belongs to the extension of the property assigned to p

Annotated RDF : For ground triples, $\mathcal{I} \models (s, p, o): \lambda$ if
- p is interpreted as a property name
- s and o are interpreted as resources
- the interpretation of the pair (s, o) belongs to the extension of the property assigned to p to a wider extent than λ
Let G be a graph over ρ_{df}.

- An interpretation \mathcal{I} is a model of G under ρ_{df}, denoted $\mathcal{I} \models G$, iff
 - \mathcal{I} is an interpretation over the vocabulary $\rho_{df} \cup \text{universe}(G)$
 - \mathcal{I} satisfies the following conditions:
Crisp Simple:

1. for each \((s, p, o) \in G, p^T \in \Delta_P\) and \((s^T, o^T) \in P[p^T]\);

Annotated Simple:

1. for each \((s, p, o): \lambda \in G, p^T \in \Delta_P\) and
\[
P[p^T](s^T, o^T) \geq \lambda.
\]

Crisp Subclass:

1. \(P[sc^T]\) is transitive over \(\Delta_C\);
2. if \((c, d) \in P[sc^T]\) then \(c, d \in \Delta_C\) and \(C[c] \subseteq C[d]\);

Annotated Subclass:

1. \(P[sc^T]\) is transitive over \(\Delta_C\);
2. \(P[sc^T](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x)\).
Crisp Simple:

1. for each \((s, p, o) \in G, p^I \in \Delta_P\) and \((s^I, o^I) \in P[p^I]\);

Annotated Simple:

1. for each \((s, p, o): \lambda \in G, p^I \in \Delta_P\) and \(P[p^I](s^I, o^I) \geq \lambda\);

Crisp Subclass:

1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. if \((c, d) \in P[sc^I]\) then \(c, d \in \Delta_C\) and \(C[c] \subseteq C[d]\);

Annotated Subclass:

1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. \(P[sc^I](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x)\).
Crisp Simple:

1. for each \((s, p, o) \in G, p^I \in \Delta_P\) and \((s^T, o^T) \in P[p^I]\\);

Annotated Simple:

1. for each \((s, p, o) : \lambda \in G, p^I \in \Delta_P\) and \(P[p^I](s^T, o^T) \geq \lambda\\);

Crisp Subclass:

1. \(P[sc^I]\\) is transitive over \(\Delta_C\\);
2. if \((c, d) \in P[sc^I]\) then \(c, d \in \Delta_C\) and \(C[c] \subseteq C[d]\\);

Annotated Subclass:

1. \(P[sc^I]\\) is transitive over \(\Delta_C\\);
2. \(P[sc^I](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x)\\).
Crisp Simple:

1. for each \((s, p, o) \in G, p^I \in \Delta_P\) and \((s^I, o^I) \in P[p^I] \);

Annotated Simple:

1. for each \((s, p, o): \lambda \in G, p^I \in \Delta_P\) and
 \[P[p^I](s^I, o^I) \geq \lambda;\]

Crisp Subclass:

1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. if \((c, d) \in P[sc^I]\) then \(c, d \in \Delta_C\) and
 \(C[c] \subseteq C[d]\);

Annotated Subclass:

1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. \(P[sc^I](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x).\)
In the crisp case, if c is a sub-class of d then we impose that $C[c] \subseteq C[d]$.

This may be seen as the formula
\[
\forall x. c(x) \Rightarrow d(x),
\]

In the annotated framework this is $(\forall x \equiv \min_{x \in \Delta_R})$
\[
P[sc^{\mathcal{T}}](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x);
\]

Transitivity: for a set $\Delta \subseteq \Delta_R \cup \Delta_P$, we say that a function $f: \Delta \times \Delta \rightarrow L$ is transitive) over Δ iff for all $x, z \in \Delta$,
\[
f(x, y) \succeq \max_{z \in \Delta} \{ f(x, z) \ominus f(z, y) \}\]
Crisp Subproperty:

1. $P[sp^I]$ is transitive over Δ_P;
2. if $(p, q) \in P[sp^I]$ then $p, q \in \Delta_P$ and $P[p] \subseteq P[q]$;

Annotated Subproperty:

1. $P[sp^I]$ is transitive over Δ_P;
2. $P[sp^I](p, q) = \min_{(x, y) \in \Delta_R \times \Delta_R} P[p](x, y) \Rightarrow P[q](x, y)$
Crisp Typing I:

1. \(x \in C[c] \) iff \((x, c) \in P[\text{type}^I] \);
2. if \((p, c) \in P[\text{dom}^I] \) and \((x, y) \in P[p] \) then \(x \in C[c] \);
3. if \((p, c) \in P[\text{range}^I] \) and \((x, y) \in P[p] \) then \(y \in C[c] \);

Annotated Typing I:

1. \(C[c](x) = P[\text{type}^I](x, c) \);
2. \(P[\text{dom}^I](p, c) = \inf_{(x, y) \in \Delta_R \times \Delta_R} P[p](x, y) \Rightarrow C[c](x) \);
3. \(P[\text{range}^I](p, c) = \inf_{(x, y) \in \Delta_R \times \Delta_R} P[p](x, y) \Rightarrow C[c](y) \).
Crisp Typing II:

1. For each \(e \in \rho \text{df} \), \(e^I \in \Delta_P \)
2. if \((p, c) \in P[\text{dom}^I]\) then \(p \in \Delta_P \) and \(c \in \Delta_C \)
3. if \((p, c) \in P[\text{range}^I]\) then \(p \in \Delta_P \) and \(c \in \Delta_C \)
4. if \((x, c) \in P[\text{type}^I]\) then \(c \in \Delta_C \)

Annotated Typing II:

1. For each \(e \in \rho \text{df} \), \(e^I \in \Delta_P \)
2. \(P[\text{dom}^I](p, c) \) is defined only for \(p \in \Delta_P \) and \(c \in \Delta_C \)
3. \(P[\text{range}^I](p, c) \) is defined only for \(p \in \Delta_P \) and \(c \in \Delta_C \)
4. \(P[\text{type}^I](x, c) \) is defined only for \(c \in \Delta_C \)
G entails \(H \) under \(\rho \text{df} \), denoted \(G \models H \), iff

- every model under \(\rho \text{df} \) of \(G \) is also a model under \(\rho \text{df} \) of \(H \)

Proposition (Consistency)

Any annotated RDFS graph has a finite model.
Deduction System for Annotated RDFS (excerpt)

1. Crisp Subproperty:

 (a) \[\frac{(A, sp, B), (B, sp, C)}{(A, sp, C)} \]

 (b) \[\frac{(A, sp, B), (X, A, Y)}{(X, B, Y)} \]

2. Annotated Subproperty:

 (a) \[\frac{(A, sp, B) : \lambda_1, (B, sp, C) : \lambda_2}{(A, sp, C) : \lambda_1 \otimes \lambda_1} \]

 (b) \[\frac{(A, sp, B) : \lambda_1, (X, A, Y) : \lambda_2}{(X, B, Y) : \lambda_1 \otimes \lambda_2} \]
Deduction System for Annotated RDFS (excerpt)

1. Crisp Subproperty:

(a) \[\frac{(A, sp, B), (B, sp, C)}{(A, sp, C)} \]

(b) \[\frac{(A, sp, B), (X, A, Y)}{(X, B, Y)} \]

2. Annotated Subproperty:

(a) \[\frac{(A, sp, B) : \lambda_1, (B, sp, C) : \lambda_2}{(A, sp, C) : \lambda_1 \otimes \lambda_1} \]

(b) \[\frac{(A, sp, B) : \lambda_1, (X, A, Y) : \lambda_2}{(X, B, Y) : \lambda_1 \otimes \lambda_2} \]
1. Crisp Subclass:

 \[
 \begin{align*}
 (a) & \quad (A, sc, B), (B, sc, C) \quad \frac{}{(A, sc, C)} \\
 (b) & \quad (A, sc, B), (X, type, A) \quad \frac{}{(X, type, B)}
 \end{align*}
 \]

2. Annotated Subclass:

 \[
 \begin{align*}
 (a) & \quad (A, sc, B) : \lambda_1, (B, sc, C) : \lambda_2 \\
 & \quad (A, sc, C) : \lambda_1 \otimes \lambda_2 \\
 (b) & \quad (A, sc, B) : \lambda_1, (X, type, A) : \lambda_2 \\
 & \quad (X, type, B) : \lambda_1 \otimes \lambda_2
 \end{align*}
 \]

3. Crisp Typing:

 \[
 \begin{align*}
 (a) & \quad (A, dom, B), (X,A,Y) \quad \frac{}{(X, type, B)} \\
 (b) & \quad (A, range, B), (X,A,Y) \quad \frac{}{(Y, type, B)}
 \end{align*}
 \]

4. Annotated Typing:

 \[
 \begin{align*}
 (a) & \quad (A, dom, B) : \lambda_1, (X,A,Y) : \lambda_2 \\
 & \quad (X, type, B) : \lambda_1 \otimes \lambda_2 \\
 (b) & \quad (A, range, B) : \lambda_1, (X,A,Y) : \lambda_2 \\
 & \quad (Y, type, B) : \lambda_1 \otimes \lambda_2
 \end{align*}
 \]
1. Crisp Subclass:

\[(a) \quad \frac{(A, \text{sc}, B), (B, \text{sc}, C)}{(A, \text{sc}, C)} \quad (b) \quad \frac{(A, \text{sc}, B), (X, \text{type}, A)}{(X, \text{type}, B)}\]

2. Annotated Subclass:

\[(a) \quad \frac{(A, \text{sc}, B): \lambda_1, (B, \text{sc}, C): \lambda_2}{(A, \text{sc}, C): \lambda_1 \otimes \lambda_2} \quad (b) \quad \frac{(A, \text{sc}, B): \lambda_1, (X, \text{type}, A): \lambda_2}{(X, \text{type}, B): \lambda_1 \otimes \lambda_2}\]

3. Crisp Typing:

\[(a) \quad \frac{(A, \text{dom}, B), (X, A, Y)}{(X, \text{type}, B)} \quad (b) \quad \frac{(A, \text{range}, B), (X, A, Y)}{(Y, \text{type}, B)}\]

4. Annotated Typing:

\[(a) \quad \frac{(A, \text{dom}, B): \lambda_1, (X, A, Y): \lambda_2}{(X, \text{type}, B): \lambda_1 \otimes \lambda_2} \quad (b) \quad \frac{(A, \text{range}, B): \lambda_1, (X, A, Y): \lambda_2}{(Y, \text{type}, B): \lambda_1 \otimes \lambda_2}\]
1. Crisp Subclass:

 \[(a) \frac{(A, sc, B), (B, sc, C)}{(A, sc, C)} \quad (b) \frac{(A, sc, B), (X, type, A)}{(X, type, B)}\]

2. Annotated Subclass:

 \[(a) \frac{(A, sc, B) : \lambda_1, (B, sc, C) : \lambda_2}{(A, sc, C) : \lambda_1 \otimes \lambda_2} \quad (b) \frac{(A, sc, B) : \lambda_1, (X, type, A) : \lambda_2}{(X, type, B) : \lambda_1 \otimes \lambda_2}\]

3. Crisp Typing:

 \[(a) \frac{(A, dom, B), (X, A, Y)}{(X, type, B)} \quad (b) \frac{(A, range, B), (X, A, Y)}{(Y, type, B)}\]

4. Annotated Typing:

 \[(a) \frac{(A, dom, B) : \lambda_1, (X, A, Y) : \lambda_2}{(X, type, B) : \lambda_1 \otimes \lambda_2} \quad (b) \frac{(A, range, B) : \lambda_1, (X, A, Y) : \lambda_2}{(Y, type, B) : \lambda_1 \otimes \lambda_2}\]
1. Crisp Implicit Typing:

(a) \[\frac{(A, \text{dom}, B), (C, \text{sp}, A), (X, C, Y)}{(X, \text{type}, B)} \]

(b) \[\frac{(A, \text{range}, B), (C, \text{sp}, A), (X, C, Y)}{(Y, \text{type}, B)} \]

2. Annotated Implicit Typing:

(a) \[\frac{(A, \text{dom}, B): \lambda_1, (C, \text{sp}, A): \lambda_2, (X, C, Y): \lambda_3}{(X, \text{type}, B): \lambda_1 \otimes \lambda_2 \otimes \lambda_3} \]

(b) \[\frac{(A, \text{range}, B): \lambda_1, (C, \text{sp}, A): \lambda_2, (X, C, Y): \lambda_3}{(Y, \text{type}, B): \lambda_1 \otimes \lambda_2 \otimes \lambda_3} \]
The annotated rules carry over all RDFS rules:

- If a classical RDFS triple τ can be inferred by applying a classical RDFS inference rule to triples τ_1, \ldots, τ_n

$$\{\tau_1, \ldots, \tau_n\} \vdash_{\text{RDFS}} \tau$$

then the annotation term of τ will be $\bigotimes_i \lambda_i$, where λ_i is the annotation of triple τ_i

- That is:

$$(A) \quad \frac{\tau_1 : \lambda_1, \ldots, \tau_n : \lambda_n, \{\tau_1, \ldots, \tau_n\} \vdash_{\text{RDFS}} \tau}{\tau : \bigotimes_i \lambda_i}$$

- Eventually, we need also the Generalisation Rule:

$$\frac{\tau : \lambda_1, \tau : \lambda_2}{\tau : \lambda_1 \lor \lambda_2} \quad \text{(and remove } \tau : \lambda_1, \tau : \lambda_2 \text{)}$$
Deduction System for Annotated RDFS (cont.)

- Notion of proof (as for crisp RDFS)
- Closure

\[cl(G) = \{ \tau : \lambda \mid G \vdash \tau : \lambda \} \]

Proposition (Soundness, Completeness, Complexity)

For an annotated graph, the proof system \(\vdash \) is sound and complete for \(\models \), that is,

1. If \(G \vdash \tau : \lambda \) then \(G \models \tau : \lambda \)
2. If \(G \models \tau : \lambda \) then there is \(\lambda' \succeq \lambda \) with \(G \vdash \tau : \lambda' \)
3. Computational complexity: is as for RDFS, plus the cost of the operations \(\otimes \) and \(\lor \) in L
Example (Proof)

\[G = \{(\text{audiTT}, \text{type}, \text{SportsCar}) : 0.8, (\text{SportsCar}, \text{sc}, \text{PassengerCar}) : 0.9\} \quad \otimes \text{ is product} \]

Let us proof that

\[G \vdash (\text{audiTT}, \text{type}, \text{PassengerCar}) : 0.72 \]

\begin{align*}
G \vdash (\text{audiTT}, \text{type}, \text{SportsCar}) & : 0.8, & (1) & \text{Hypothesis} \\
G \vdash (\text{SportsCar}, \text{sc}, \text{PassengerCar}) & : 0.9 & (2) & \text{Hypothesis} \\
G \vdash (\text{audiTT}, \text{type}, \text{PassengerCar}) & : 0.72 & (3) & \text{Rule SubClass (b) applied to (1) + (2) using product t-norm} \\
\end{align*}

Similarly, we get

\[(\text{umberto}, \text{type}, \text{IEIEmployee}) : [1992, 2001] \]
\[(\text{IEIEmployee}, \text{sc}, \text{PisaCenterEmployee}) : [1968, 2000] \]
\[\overline{(\text{umberto}, \text{sc}, \text{PisaCenterEmployee}) : [1992, 2000]} \]

Annotated RDFS Query Answering (excerpt)

- **Conjunctive query:**
 \[q(x, v) \leftarrow \exists y \exists v'. \varphi(x, v, y, v') \]

 where
 - \(\varphi(x, v, y, v') \) is a conjunction of annotated triples and built-in predicates
 - \(x, y \) range over RDFS terms
 - \(v, v' \) range over annotation values
 - \(x, v, y \) and \(v' \) are pairwise disjoint

- **Example:** “sports car drivers between 1975 and 1985 and the temporal term at which this was true”
 \[q(x, v) \leftarrow (x, \text{type}, \text{SportsCarDriver}) : v \land (v \leq [1975, 1985]) \]

- **Proposition**
 Given a graph \(G \), \(\langle t, c \rangle \) is an answer to \(q \) iff \(\exists y \exists v'. \varphi(t, c, y, v') \) is true in the closure of \(G \).
A simple query answering procedure is the following:
- Represent annotated triples as reified RDFS triples
- Compute the closure of a graph off-line
- Store the annotated RDFS triples into a relational database
- Translate the query into SQL statement
- Execute the SQL statement over the relational database

A prototype has been implemented (in SWI-Prolog):
- http://anql.deri.org
Summary & Outlook

- We have presented Annotated RDFS:
 - It’s general and flexible
 - define an annotation domain with operations \otimes and \lor
 - Conservative extension of RDFS
 - Deductive system generalises crisp RDFS
 - Conservative extension of conjunctive query answering
 - Implementation relatively easy (prototype already available)

- Forthcoming:
 - AnQL: a conservative SPARQL (1.1) extension to query annotated RDFS graphs

Questions? Ask him . . .