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Ontologies play a crucial role in the development of the Semantic Web as a means for defining shared
terms in web resources. They are formulated in web ontology languages, which are based on expres-
sive description logics. Significant research efforts in the semantic web community are recently directed
towards representing and reasoning with uncertainty and vagueness in ontologies for the Semantic Web.
In this paper, we give an overview of approaches in this context to managing probabilistic uncertainty,
possibilistic uncertainty, and vagueness in expressive description logics for the Semantic Web.
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. Introduction

The Semantic Web [6,7,33,56] has recently attracted much atten-
ion, both from academia and industry, and is widely regarded as
he next step in the evolution of the World Wide Web. It aims at an
xtension of the current Web by standards and technologies that
elp machines to understand the information on the Web so that
hey can support richer discovery, data integration, navigation,
nd automation of tasks. The main ideas behind it are to add a
achine-understandable “meaning” to web pages, to use ontolo-

ies for a precise definition of shared terms in web resources, to
se KR technology for automated reasoning from web resources,
nd to apply cooperative agent technology for processing the

nformation of the Web.

The Semantic Web consists of several hierarchical layers, where
he Ontology layer, in form of the OWL Web Ontology Language
56,150] (recommended by the W3C), is currently the highest layer

∗ Corresponding author.
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1 Alternative address: Institut für Informationssysteme, Technische Universität

ien, Favoritenstraße 9-11, A-1040 Wien, Austria.

e
(
S
t
t
O
l
l
m
c
r

570-8268/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.websem.2008.04.001
f sufficient maturity. OWL consists of three increasingly expres-
ive sublanguages, namely, OWL Lite, OWL DL, and OWL Full. Hence,
ntologies [37] (see especially [116] for an introduction to ontolo-
ies including a detailed historical account) play a key role in the
emantic Web, and a major effort has been put by the Semantic
eb community into this issue. Informally, an ontology consists of
hierarchical description of important and precisely defined con-

epts in a particular domain, along with the description of the
roperties (of the instances) of each concept. Web content is then
nnotated by relying on the concepts defined in a specific domain
ntology.

OWL Lite and OWL DL are essentially very expressive descrip-
ion logics [3] with an RDF syntax [56]. More specifically, ontology
ntailment in OWL Lite and OWL DL reduces to knowledge base
un)satisfiability in the expressive description logics SHIF(D) and
HOIN(D) [55,57], respectively. Hence, these expressive descrip-
ion logics play an important role in the Semantic Web, since
hey are essentially the theoretical counterparts of OWL Lite and
WL DL, respectively. More generally, description logics are a
ogical reconstruction of frame-based knowledge representation
anguages, with the aim of providing a decidable first-order for-

alism with a simple well-established declarative semantics to
apture the meaning of the most popular features of structured
epresentation of knowledge.

http://www.sciencedirect.com/science/journal/15708268
http://www.elsevier.com/locate/websem
mailto:thomas.lukasiewicz@comlab.ox.ac.uk
mailto:lukasiewicz@kr.tuwien.ac.at
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However, classical ontology languages and description logics
re less suitable in all those domains where the information to
e represented comes along with (quantitative) uncertainty and/or
agueness (or imprecision). For example, uncertain information may
e of the form “John is a teacher with the degree of certainty 0.3 and
student with the degree of certainty 0.7” (roughly, John is either a

eacher or a student, but more likely a student), while vague infor-
ation may be of the form “John is tall with the degree of truth 0.9”

roughly, John is quite tall); see Section 2. Formalisms for dealing
ith uncertainty and vagueness have started to play an important

ole in research related to the Web and the Semantic Web. For exam-
le, the order in which Google returns the answers to a web search
uery is computed by using probabilistic techniques. Furthermore,
ormalisms for dealing with uncertainty and vagueness in ontolo-
ies have been successfully applied in ontology matching, data
ntegration, and information retrieval. Vagueness and imprecision
lso abound in multimedia information processing and retrieval. In
ddition, handling vagueness is an important aspect of natural lan-
uage interfaces to the Web. There exists a W3C Incubator Group
n Uncertainty Reasoning for the World Wide Web, and an important
ecent forum for approaches to uncertainty in the Semantic Web is
he annual Workshop on Uncertainty Reasoning for the Semantic Web
URSW) at the International Semantic Web Conference (ISWC).

The rising popularity of description logics and their use, and
he need to deal with uncertainty and vagueness, both especially
n the Semantic Web, is increasingly attracting the attention of

any researchers and practitioners towards description logics able
o cope with uncertainty and vagueness. The goal of this paper is to
rovide an overview of the current state of the art about the man-
gement of uncertainty and vagueness in description logics for the
emantic Web, which should help the reader to get insights on main
eatures of the formalisms proposed in the literature.

The rest of this paper is organized as follows. In Section 2, we give
brief introduction to uncertainty and vagueness at the proposi-

ional level. In Section 3, we describe the classical description logic
HOIN(D), which is the reference language in this paper. Sections
and 5 show how to extend classical description logics by prob-

bilistic and possibilistic uncertainty, respectively, while Section 6
escribes how to extend classical description logics for the man-
gement of vague/imprecise knowledge. In Section 7, we give a
ummary and an outlook on open research.

. Uncertainty and vagueness

There has been a long-lasting misunderstanding in the litera-
ure of artificial intelligence and uncertainty modeling, regarding
he role of probability/possibility theory and vague/fuzzy theory.

clarifying paper is [26]. We recall here salient notes, which may
larify the role of these theories for the inexpert reader.

A standard example that points out the difference between
egrees of uncertainty and degrees of truth is that of a bottle [26]. In
erms of binary truth values, a bottle is viewed as full or empty. But
f one accounts for the quantity of liquid in the bottle, one may, e.g.
ay that the bottle is “half-full”. Under this way of speaking, “full”
ecomes a fuzzy predicate [155] and the degree of truth of “the bot-
le is full” reflects the amount of liquid in the bottle. The situation is
uite different when expressing our ignorance about whether the
ottle is either full or empty (given that we know that only one of
he two situations is the true one). Saying that the probability that

he bottle is full is 0.5 does not mean that the bottle is half full.

We recall that under uncertainty theory fall all those approaches
n which statements rather than being either true or false, are true
r false to some probability or possibility (for example, “it will rain
omorrow”). That is, a statement is true or false in any world, but

d
i
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i
f
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e are “uncertain” about which world to consider as the right one,
nd thus we speak about, e.g. a probability distribution or a possi-
ility distribution over the worlds. For example, we cannot exactly
stablish whether it will rain tomorrow or not, due to our incom-
lete knowledge about our world, but we can estimate to which
egree this is probable, possible, and necessary.

As for the main differences between probability and possibility
heory, the probability of an event is the sum of the probabilities
f all worlds that satisfy this event, whereas the possibility of an
vent is the maximum of the possibilities of all worlds that satisfy
he event. Intuitively, the probability of an event aggregates the
robabilities of all worlds that satisfy this event, whereas the pos-
ibility of an event is simply the possibility of the “most optimistic”
orld that satisfies the event. Hence, although both probability and
ossibility theory allow for quantifying degrees of uncertainty, they
re conceptually quite different from each other. That is, probability
nd possibility theory represent different facets of uncertainty.

On the other hand, under vagueness/fuzziness theory fall all those
pproaches in which statements (for example, “the tomato is ripe”)
re true to some degree, which is taken from a truth space. That is,
n interpretation maps a statement to a truth degree, since we are
nable to establish whether a statement is completely true or false
ue to the involvement of vague concepts, such as “ripe”, which
nly have an imprecise definition. For example, we cannot exactly
ay whether a tomato is ripe or not, but rather can only say that
he tomato is ripe to some degree. Usually, such statements involve
o-called vague/fuzzy predicates [155].

Note that all vague/fuzzy statements are truth-functional, that
s, the degree of truth of every statement can be calculated from
he degrees of truth of its constituents, while uncertain statements
annot be a function of the uncertainties of their constituents
25]. More concretely, in probability theory, only the negation is
ruth-functional (see Eq. (1)), while in possibility theory, only the
isjunction respectively conjunction is truth-functional in possi-
ilities respectively necessities of events (see Eq. (2)). Furthermore,
uzzy logics are based on truly many-valued logical operators, while
ncertainty logics are defined on top of standard binary logical
perators.

In the following, we illustrate a typical formalization of uncer-
ain statements and vague statements. In the former case, we
onsider a basic probabilistic/possibilistic logic, while in the latter,
e consider a basic many-valued logic.

.1. Probabilistic logic

Probabilistic logic has its origin in philosophy and logic. Its roots
an be traced back to Boole in 1854 [11]. There is a wide spectrum
f formal languages that have been explored in probabilistic logic,
anging from constraints for unconditional and conditional events
o rich languages that specify linear inequalities over events (see
specially the work by Nilsson [100], Fagin et al. [32], Dubois and
rade et al. [23,28,2,27], Frisch and Haddawy [34], and Lukasiewicz
83,84,86]; see also the survey on sentential probability logic by
ailperin [41]). Recently, nonmonotonic generalizations of proba-
ilistic logic have been developed and explored; see especially [88]
or an overview. In this section, for illustrative purposes, we recall
nly the simple probabilistic logic described in [100].

We first define probabilistic formulas and probabilistic knowl-
dge bases. We assume a set of basic events � = {p1, . . . , pn} with
≥ 1. We use ⊥ and � to denote false and true, respectively. We

efine events by induction as follows. Every element of � ∪ {⊥,�}

s an event. If � and  are events, then also ¬�, (� ∧ ), (� ∨ ),
nd (�→  ) are events. We adopt the usual conventions to elim-
nate parentheses. A probabilistic formula is an expression of the
orm � ≥ l, where � is an event, and l is a real number from the
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P� ≥ l (respectively, N� ≥ l), or � is a model of P� ≥ l (respec-
tively, N� ≥ l), denoted � � P� ≥ l (respectively, � � N� ≥ l), iff
T. Lukasiewicz, U. Straccia / Web Semantics: Science, Se

nit interval [0,1]. Informally, � ≥ l says that � is true with a prob-
bility of at least l. For example, rain tomorrow ≥ 0.7 may express
hat it will rain tomorrow with a probability of at least 0.7. Notice
lso that ¬� ≥ 1 − u encodes that � is true with a probability of at
ost u. A probabilistic knowledge baseK is a finite set of probabilistic

ormulas.
Next, we define worlds and probabilistic interpretations. A world

associates with every basic event in � a binary truth value. We
xtend I by induction to all events as usual. We denote by I� the
finite) set of all worlds for �. A world I satisfies an event �, or I
s a model of �, denoted I � �, iff I(�) = true. A probabilistic inter-
retation Pr is a probability function on I� (that is, a mapping
r : I� → [0,1] such that all Pr(I) with I ∈ I� sum up to 1). Intu-
tively, Pr(I) is the degree to which the world I ∈ I� is probable,
hat is, the probability function Pr encodes our “uncertainty” about
hich world is the right one. The probability of an event � in Pr,
enoted Pr(�), is the sum of all Pr(I) such that I ∈ I� and I � �.
he following theorem is an immediate consequence of the above
efinitions.

heorem 2.1. For all probabilistic interpretations Pr and events �
nd  , the following relationships hold:

Pr(� ∧ ) = Pr(�) + Pr( ) − Pr(� ∨ );
Pr(� ∧ ) ≤ min(Pr(�), Pr( ));
Pr(� ∧ ) ≥ max(0, Pr(�) + Pr( ) − 1);
Pr(� ∨ ) = Pr(�) + Pr( ) − Pr(� ∧ );
Pr(� ∨ ) ≤ min(1, Pr(�) + Pr( )) ;
Pr(� ∨ ) ≥ max(Pr(�), Pr( )) ;
Pr(¬�) = 1 − Pr(�);
Pr(⊥) = 0;
Pr(�) = 1.

(1)

A probabilistic interpretation Pr satisfies a probabilistic formula
≥ l, or Pr is a model of � ≥ l, denoted Pr � � ≥ l, iff Pr(�) ≥ l. We

ay Pr satisfies a probabilistic knowledge base K, or Pr is a model
f K, iff Pr satisfies all F ∈K. We say K is satisfiable iff a model of K
xists. A probabilistic formula F is a logical consequence ofK, denoted
� F , iff every model of K satisfies F. We say � ≥ l is a tight logical

onsequence of K iff l is the infimum of Pr(�) subject to all models
r of K. Notice that the latter is equivalent to l = sup{r |K � � ≥ r}.

The main decision and optimization problems in probabilistic
ogic are deciding the satisfiability of probabilistic knowledge bases
nd logical consequences from probabilistic knowledge bases, as
ell as computing tight logical consequences from probabilistic

nowledge bases, which can be done by deciding the solvability of
system of linear inequalities and by solving a linear optimization
roblem, respectively. In particular, column generation techniques
rom operations research have been successfully used to solve large
roblem instances in probabilistic logic; see especially the work by

aumard et al. [63] and Hansen et al. [46].

.2. Possibilistic logic

We next recall possibilistic logic; see especially [21]. The main
yntactic and semantic differences to probabilistic logic can be
ummarized as follows. Syntactically, rather than using probabilis-
ic formulas to constrain the probabilities of propositional events,
e now use possibilistic formulas to constrain the necessities and
ossibilities of propositional events. Semantically, rather than hav-

ng probability distributions on worlds, each of which associates

ith every event a unique probability, we now have possibility dis-

ributions on worlds, each of which associates with every event
unique possibility and a unique necessity. Differently from the

robability of an event, which is the sum of the probabilities of all
orlds that satisfy that event, the possibility of an event is the max-
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mum of the possibilities of all worlds that satisfy the event. As a
onsequence, probabilities and possibilities of events behave quite
ifferently from each other (see Eqs. (1) and (2)). These fundamen-
al semantic differences between probabilities and possibilities can
lso be used as the main criteria for using either probabilistic logic
r possibilistic logic in a given application involving uncertainty.
n addition, possibilistic logic may especially be used for encoding
ser preferences, since possibility measures can actually be viewed
s rankings (on worlds or also objects) along an ordinal scale.

The semantic differences between probabilities and possibilities
re also reflected in the computational properties of possibilistic
nd probabilistic logic, since reasoning in probabilistic logic gener-
lly requires to solve linear optimization problems, while reasoning
n possibilistic logic does not, and thus can generally be done with
ess computational effort. Note that although possibility measures
an be viewed as sets of upper probability measures [24], and pos-
ibility and probability measures can be translated into each other
20], no translations are known between possibilistic and proba-
ilistic knowledge bases as described here.

We first define possibilistic formulas and knowledge bases. Pos-
ibilistic formulas have the form P� ≥ l or N� ≥ l, where � is an
vent, and l is a real number from [0,1]. Informally, such formu-
as encode to what extent � is possibly respectively necessarily true.
or example, P rain tomorrow ≥ 0.7 encodes that it will rain tomor-
ow is possible to degree 0.7, while N father → man ≥ 1 says that
father is necessarily a man. A possibilistic knowledge base K is a
nite set of possibilistic formulas.

A possibilistic interpretation is a mapping � : I� → [0,1]. Intu-
tively, �(I) is the degree to which the world I is possible. In
articular, every world I such that�(I) = 0 is impossible, while every
orld I such that�(I) = 1 is totally possible. We say� is normalized iff
(I) = 1 for some I ∈ I�. Intuitively, this guarantees that there exists
t least one world, which could be considered as the real one. The
ossibility of an event � in a possibilistic interpretation �, denoted
oss(�), is then defined by Poss(�) = max{�(I) | I ∈ I�, I � �} (where
ax ∅ = 0). Intuitively, the possibility of � is evaluated in the most

ossible world where � is true. The dual notion to the possibility of
n event � is the necessity of �, denotedNec(�), which is defined by
ec(�) = 1 − Poss(¬�). It reflects the lack of possibility of ¬�, that

s,Nec(�) evaluates to what extent� is certainly true. The following
heorem follows immediately from the above definitions.

heorem 2.2. For all possibilistic interpretations� and events� and
, the following relationships hold:

Poss(� ∧ ) ≤ min(Poss(�), Poss( ));
Poss(� ∨ ) = max(Poss(�), Poss( ));
Poss(¬�) = 1 − Nec(�);
Poss(⊥) = 0;
Poss(�) = 1 (in the normalized case);
Nec(� ∧ ) = min(Nec(�),Nec( ));
Nec(� ∨ ) ≥ max(Nec(�),Nec( ));
Nec(¬�) = 1 − Poss(�);
Nec(⊥) = 0 (in the normalized case);
Nec(�) = 1.

(2)

A possibilistic interpretation � satisfies a possibilistic formula
oss(�) ≥ l (respectively, Nec(�) ≥ l). The notions of satisfiability,
ogical consequence, and tight logical consequence for possibilistic
nowledge bases are then defined as usual (in the same way as in
he probabilistic case). We refer the reader to [21,53] for algorithms
or possibilistic logic.
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Table 1
Properties for t-norms and s-norms

Axiom name T-norm S-norm

Tautology/contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b) ⊗ c = a⊗ (b⊗ c) (a⊕ b) ⊕ c = a⊕ (b⊕ c)
Monotonicity if b ≤ c, then a⊗ b ≤ a⊗ c if b ≤ c, then a⊕ b ≤ a⊕ c

Table 2
Properties for implication and negation functions

Axiom name Implication function Negation function
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Table 3
Combination functions of various fuzzy logics

Łukasiewicz logic Gödel logic Product logic Zadeh logic

a⊗ b max(a+ b− 1,0) min(a, b) a · b min(a, b)
a⊕ b min(a+ b,1) max(a, b) a+ b− a · b max(a, b)

a � b min(1 − a+ b,1)

{
1 if a ≤ b
b otherwise

min(1, b/a) max(1 − a, b)

�a 1 − a
{

1 if a = 0
0 otherwise

{
1 if a = 0
0 otherwise

1 − a

Table 4
Some additional properties of combination functions of various fuzzy logics

Property Łukasiewicz logic Gödel logic Product logic Zadeh logic

x⊗ � x = 0 + + + −
x⊕ � x = 1 + − − −
x⊗ x = x − + − +
x⊕ x = x − + − +
� � x = x + − − +
x � y = � x⊕ y + − − +
�
�
�
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3. Classical description logics
autology/contradiction 0 � b = 1, a � 1 = 1, 1 � 0 = 0 � 0 = 1,�1 = 0
ntitonicity if a ≤ b, then a � c ≥ b � c if a ≤ b, then � a ≥ �b
onotonicity if b ≤ c, then a � b ≤ a � c

.3. Many-valued logics

In the setting of many-valued logics, the convention prescrib-
ng that a proposition is either true or false is changed. A more
efined range is used for the function that represents the meaning
f a proposition. This is usual in natural language when words are
odeled by fuzzy sets. For example, the compatibility of “tall” in

he phrase “a tall man” with some individual of a given height is
ften graded: the man can be judged not quite tall, somewhat tall,
ather tall, very tall, etc. Changing the usual true/false convention
eads to a new concept of proposition, whose compatibility with a
iven state of facts is a matter of degree and can be measured on
n ordered scale S that is no longer {0,1}, but, e.g. the unit interval
0,1]. This leads to identifying a “fuzzy proposition” �with a fuzzy
et of possible states of affairs; the degree of membership of a state
f affairs to this fuzzy set evaluates the degree of fit between the
roposition and the state of facts it refers to. This degree of fit is
alled degree of truth of the proposition � in the interpretation I
state of affairs). Many-valued logics provide compositional calculi
f degrees of truth, including degrees between “true” and “false”. A
entence is now not true or false only, but may have a truth degree
aken from a truth space S, usually [0,1] or { 0

n ,
1
n , . . . ,

n
n } for an

nteger n ≥ 1. In the sequel, we assume S = [0,1].
In the many-valued logic that we consider here, many-valued

ormulas have the form � ≥ l or � ≤ u, where l, u∈ [0,1] [40,42],
hich encode that the degree of truth of � is at least l respectively

t most u. For example, ripe tomato ≥ 0.9 says that we have a rather
ipe tomato (the degree of truth of ripe tomato is at least 0.9).

Semantically, a many-valued interpretation I maps each basic
roposition pi into [0,1] and is then extended inductively to all
ropositions as follows:

I(� ∧ ) = I(�) ⊗ I( );
I(� ∨ ) = I(�) ⊕ I( );
I(�→  ) = I(�) � I( );
I(¬�) = � I(�),

(3)

here ⊗, ⊕, �, and � are so-called combination functions, namely,
riangular norms (or t-norms), triangular co-norms (or s-norms),
mplication functions, and negation functions, respectively, which
xtend the classical Boolean conjunction, disjunction, implication,
nd negation, respectively, to the many-valued case.

Several t-norms, s-norms, implication functions, and nega-
ion functions have been given in the literature. An important

spect of such functions is that they satisfy some properties that
ne expects to hold for the connectives; see Tables 1 and 2.
ote that in Table 1, the two properties Tautology and Contra-
iction follow from Identity, Commutativity, and Monotonicity.

S
O

(x � y) = x⊗ � y + − − +
(x⊗ y) = � x⊕ � y + + + +
(x⊕ y) = � x⊗ � y + + + +

sually, the implication function � is defined as r-implication, that
s, a � b = sup{c|a⊗ c ≤ b}.

Some t-norms, s-norms, implication functions, and negation
unctions of various fuzzy logics are shown in Table 3[42]. In
uzzy logic, one usually distinguishes three different logics, namely,
ukasiewicz, Gödel, and Product logic; the popular Zadeh logic
s a sublogic of Łukasiewicz logic. min(x, y) = x ∧ (x→ y) and

ax(x, y) = (x→ y) → y. Some salient properties of these logics are
hown in Table 4. For more properties, see especially [42,102].

The implication x � y = max(1 − x, y) is called Kleene-Dienes
mplication in the fuzzy logic literature. Note that we have the
ollowing inferences: let a ≥ n and a � b ≥ m. Then, under Kleene-
ienes implication, we infer that if n > 1 −m then b ≥ m. Under

-implication relative to a t-norm ⊗, we infer that b ≥ n⊗m.
Note that implication functions and t-norms are also used to

efine the degree of subsumption between fuzzy sets and the
omposition of two (binary) fuzzy relations. A fuzzy set R over a
ountable crisp set X is a function R : X → [0,1]. The degree of sub-
umption between two fuzzy sets A and B, denoted A ⊆ B, is defined
s infx∈XA(x) � B(x), where � is an implication function. Note that
f A(x) ≤ B(x), for all x∈ [0,1], then A ⊆ B evaluates to 1. Of course,
⊆ B may evaluate to a value v∈ (0,1) as well. A (binary) fuzzy

elation R over two countable crisp sets X and Y is a function R :
× Y → [0,1]. The inverse of R is the function R−1 : Y × X → [0,1]
ith membership function R−1(y, x) = R(x, y), for every x∈X and
∈Y . The composition of two fuzzy relations R1 : X × Y → [0,1] and
2 : Y × Z → [0,1] is defined as (R1 ◦ R2)(x, z) = supy∈YR1(x, y) ⊗
2(y, z). A fuzzy relation R is transitive iff R(x, z) ≥ (R ◦ R)(x, z).

A many-valued interpretation I satisfies a many-valued formula
≥ l (respectively, � ≤ u) or I is a model of � ≥ l (respectively, � ≤

), denoted I � � ≥ l (respectively, I � � ≤ u), iff I(�) ≥ l (respec-
ively, I(�) ≤ u). The notions of satisfiability, logical consequence,
nd tight logical consequence for many-valued knowledge bases
re then defined in the standard way (in the same way as in the
robabilistic case). We refer the reader to [39,40,42] for algorithms
or many-valued logics.
In this section, we recall the expressive description logic
HOIN(D) [57], which stands behind the web ontology languages
WL DL [55,56]. The purpose of this section is to make the
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Roadster � Cabriolet�
T. Lukasiewicz, U. Straccia / Web Semantics: Science, Se

aper self-contained. It also helps in understanding the differences
etween classical, probabilistic, possibilistic, and fuzzy SHOIN(D).
he reader confident with theSHOIN(D) terminology may skip this
ection.

.1. Syntax

The expressive description logic SHOIN(D) is a generalization
f SHOIN by datatypes, such as strings and integers, using concrete
omains [4,93,92]

The elementary ingredients are as follows. We assume a set of
ata values, a set of elementary datatypes, and a set of datatype pred-

cates, where each datatype predicate has a predefined arity n ≥ 1.
datatype is an elementary datatype or a finite set of data values. A

atatype theory D = (�D, ·D) consists of a datatype domain�D and a
apping ·D that assigns to each data value an element of�D, to each

lementary datatype a subset of�D, and to each datatype predicate
f arity n a relation over�D of arity n. We extend ·D to all datatypes
y {v1, . . .}D = {vD

1 , . . .}. For example, over the integers, ≥20 may be
unary predicate denoting the set of integers greater or equal to
0, and thus Person � ∃age.≥20 may denote a person whose age is
t least 20. Let A, RA, RD, and I be pairwise disjoint sets of atomic
oncepts, abstract roles, datatype roles, and individuals, respectively.

A role is either an abstract roleR∈ RA, the inverseR− of an abstract
ole R∈ RA, or a datatype role T ∈ RD (note that datatype roles do not
ave inverses). We use R−

A to denote the set of all inverses of abstract
oles in RA.

An RBox R consists of a finite set of transitivity axioms
rans(R), where R∈ RA, and role inclusion axioms R � S, where either
, S ∈ RA ∪ R−

A or R, S ∈ RD.
We next define the notion of a simple abstract role. For abstract

oles R∈ RA, we define Inv(R) = R− and Inv(R−) = R. Let ��R denote
he reflexive and transitive closure of � on

⋃
{{R � S,Inv(R) �

nv(S)}|R � S ∈R, R, S ∈ RA ∪ R−
A }. An abstract role S is simple rela-

ive to R iff for each abstract role R such that R��R S, it holds that
i) Trans(R) /∈ R and (ii) Trans(Inv(R)) /∈ R. Informally, an abstract
ole S is simple iff it is neither transitive nor has transitive subroles.

Concepts are defined by induction as follows. Each A∈ A is a con-
ept, ⊥ and � are concepts, and if a1, . . . , an ∈ I, then {a1, . . . , an} is
concept (called oneOf). If C, C1, C2 are concepts and R∈ RA ∪ R−

A ,
hen (C1 � C2), (C1 � C2), and ¬C are concepts (called conjunction,
isjunction, and negation, respectively), as well as ∃R.C, ∀R.C, ≥ nR,
nd ≤ nR (called exists, value, atleast, and atmost restriction, respec-
ively) for an integer n ≥ 0. If D is an n-ary datatype predicate
nd T, T1, . . . , Tn ∈ RD, then ∃T1, . . . , Tn.D, ∀T1, . . . , Tn.D, ≥ nT , and
nT are concepts (called datatype exists, value, atleast, and atmost

estriction, respectively) for an integer n ≥ 0. For example, we may
rite the concept

lower � ∃hasPetalWidth.≥20 mm � ∃hasPetalWidth.≤40 mm �
∃hasColor.Red

o denote the set of flowers having petal’s dimension within 20 mm
nd 40 mm (where we assume that every flower has exactly one
ssociated petal width) whose color is red. Here, ≥20 mm and ≤40 mm
re datatype predicates. We eliminate (and add) parentheses as
sual, and we often use = 1R to abbreviate (≥ 1R) � (≤ 1R).

A TBox T is a finite set of concept inclusion axioms C � D, where
and D are concepts. We often use C = D to abbreviate C � D and

� C. An abstract role R is functional if the interpretation of the role
(see below) is always functional. A functional role R can always be
btained from an abstract role by means of the axiom � � (≤ 1R).
herefore, whenever we say that a role is functional, we implicitly
ssume that � � (≤ 1R) is in the TBox.
and Agents on the World Wide Web 6 (2008) 291–308 295

An ABox A is a finite set of concept membership axioms a : C,
ole membership axioms (a, b) : R (respectively, (a, v) : T), equality
xioms a = b, and inequality axioms a /= b, where C is a concept,
∈ RA, T ∈ RD, a, b∈ I, and v is a data value. A knowledge base K =
T,R,A) consists of a TBox T, an RBox R, and an ABox A.

.2. Semantics

An interpretation I = (�I, ·I) relative to a datatype theory D =
�D, ·D) consists of a nonempty abstract domain �I, disjoint from

D, and an interpretation function ·I that assigns to each a∈ I an
lement in�I, to each C ∈ A a subset of�I, to each R∈ RA a subset
f �I ×�I, to each T ∈ RD a subset of �I ×�D, and to every data
alue, datatype, and datatype predicate the same value as ·D. The
apping ·I is extended to all roles and concepts as usual (where
I(x) = {y | (x, y) ∈RI}, and #X denotes the cardinality of the set X):

(R−)I = {(y, x) | (x, y) ∈RI};
�I =�I;
⊥I = ∅;
{a1, . . . , an}I = {aI1, . . . , aIn};
(C1 � C2)I = CI1 ∩ CI2;
(C1 � C2)I = CI1 ∪ CI2;
(¬C)I =�I \ CI;
(∀R.C)I = {x∈�I |RI(x) ⊆ CI};
(∃R.C)I = {x∈�I |RI(x) ∩ CI /= ∅};
(≥ nR)I = {x∈�I | #RI(x) ≥ n};
(≤ nR)I = {x∈�I | #RI(x) ≤ n};
(∀T1, . . . , Tn.d)I = {x∈�I | TI1(x) × . . .× TIn (x) ⊆ dI};
(∃T1, . . . , Tn.d)I = {x∈�I | TI1(x) × . . .× TIn (x) ∩ dI /= ∅}.

he satisfaction of an axiom E in an interpretation I = (�I, ·I),
enoted I � E, is defined as follows: (1) I � Trans(R) iff RI is tran-
itive, (2) I � R � S iff RI ⊆ SI, (3) I � C � D iff CI ⊆ DI, (4) I �
: C iff aI ∈CI, (5) I � (a, b) : R iff (aI, bI) ∈RI, (6) I � (a, v) : T iff
aI, vD) ∈ TI, (7) I � a = b iff aI = bI, (8) I � a /= b iff aI /= bI. We say
satisfies E, or I is a model of E, iff I � E. We say I satisfies a set of

xioms E, or I is a model of E, denoted I � E, iff I � E for all E ∈ E. An
nterpretation I satisfies a knowledge base K = (T,R,A), or I is a

odel of K, denoted I � K, iff I satisfies each component T, R, and
. A knowledge baseK is satisfiable iff it has a model I. An axiom E is
logical consequence of K, denoted K � E, iff every model of K satis-
es E. A concept C is satisfiable relative to K iff K has a model I such
hat CI /= ∅.

xample 3.1 (Car Example). Consider the following excerpt of a
imple ontology about cars. Let R = ∅ and let the TBox T contain
he following axioms (wheremaker and topType are abstract roles,
hile passenger capacity and max speed are datatype roles with

he natural numbers N respectively kilometers per hour km/h as
atatypes; the datatype predicate ≥245 km/h is true if the value is at

east 245 km/h):

(≥ 1maker) � Car; � � ∀maker.Maker;
(≥ 1passenger capacity) � Car; � � ∀passenger capacity.N;
(≥ 1maxspeed) � Car; � � ∀maxspeed.km/h;
Car � (= 1maker) �

(= 1passenger capacity)�
(= 1maxspeed);
∃passenger capacity.=2;
Cabriolet � Car � ∃topType.SoftTop;
SportsCar = Car�

∃maxspeed.≥245 km/h.
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It is based on the language of conditional constraints [84], which
encode interval restrictions for conditional probabilities over con-
cepts. Every probabilistic knowledge base consists of (i) a PTBox,
which is a classical (description logic) knowledge base along with

1 Reference-class reasoning [110,70,71,106] is one of the most influential entail-
ment relations for reasoning from statistical knowledge and degrees of belief. The
main idea behind it is to equate the degrees of belief about a particular individual
96 T. Lukasiewicz, U. Straccia / Web Semantics: Science, Se

Informally, the roles maker, passenger capacity, and max speed
elate cars to a car maker, a natural number for its passenger capac-
ty, and a value in kilometers per hour for its maximum speed,
espectively. Furthermore, roadsters are cabriolets with the pas-
enger capacity two, cabriolets are cars with a soft top, and sports
ars are exactly cars with a maximum speed of at least 245 km/h.

The ABoxA contains the following concept membership axioms:

mgb : Roadster � ∃maker.{mg} � ∃max speed.≤170 km/h;
enzo : Car � ∃maker.{ferrari} � ∃max speed.>350 km/h;
tt : Car � ∃maker.{audi} � ∃max speed.=243 km/h.

t is then not difficult to verify that some logical consequences of
he above knowledge base K = (T,R,A) are given as follows:

K � Roadster � Car; K � mg :Maker;
K � enzo : SportsCar; K � tt : ¬SportsCar.

.3. Main reasoning problems

The main reasoning problems in SHOIN(D) are deciding the
ogical consequence of concept inclusion axioms (CSub), concept

embership axioms (CMem), and role membership axioms from
nowledge bases (RMem), deciding the satisfiability of concepts
elative to knowledge bases (CSat), and deciding the satisfiabil-
ty of knowledge bases (KBSat). Note that (i) CSat and KBSat can
e reduced to each other, (ii) CMem and RMem are special cases of
Sub (in SHOIN(D)), and (iii) CSat and CSub can be reduced to each
ther. The above problems are all decidable inSHOIN(D) if all num-
er restrictions in K = (T,R,A) are restricted to simple abstract
oles w.r.t. R [58]. Decision procedures are given in [143,57], and
easoning tools for SHOIN(D) are, e.g., FaCT++ [145,54] and Pellet
105].

. Probabilistic uncertainty and description logics

In this section, we recall an important probabilistic generaliza-
ion of SHOIN(D) towards sophisticated formalisms for reasoning
nder probabilistic uncertainty in the Semantic Web, called P-
HOIN(D), which has been introduced in [90].

Note that any other classical description logic can be similarly
xtended by probabilistic uncertainty. In particular, closely related
robabilistic generalizations of DL-Lite and the description logics
HIF(D) and SHOQ(D) (which stand behind the web ontology

anguages OWL Lite and DAML+OIL, respectively) have been intro-
uced in [90,36]. The syntax and semantics of such an extension
an be defined in the same way as for P- SHOIN(D). Further-
ore, if the chosen classical description logic allows for decidable

nowledge base satisfiability, then also the main reasoning tasks
n the probabilistic extension are all decidable. Note that to allow
or probabilistic role membership axioms (encoding that “R(a, b)
respectively,U(a, v)) holds with a probability between l and u”), the
xtended classical description logic should have the oneOf (respec-
ively, datatype oneOf) construct.

The syntax of the probabilistic description logic P- SHOIN(D)
ses the notion of a conditional constraint from [84] to express
robabilistic knowledge in addition to the axioms of SHOIN(D).

ts semantics is based on the notion of lexicographic entailment in
robabilistic default reasoning [85,87], which is a probabilistic gen-

ralization of the sophisticated notion of lexicographic entailment
y Lehmann [72] in default reasoning from conditional knowledge
ases. Due to this semantics, P- SHOIN(D) allows for expressing
oth terminological probabilistic knowledge about concepts and
oles, and also assertional probabilistic knowledge about instances

w
u
I
o
b
i

and Agents on the World Wide Web 6 (2008) 291–308

f concepts and roles. It naturally interprets terminological and
ssertional probabilistic knowledge as statistical knowledge about
oncepts and roles and as degrees of belief about instances of con-
epts and roles, respectively, and allows for deriving both statistical
nowledge and degrees of belief. As an important additional fea-
ure, it also allows for expressing default knowledge about concepts
as a special case of terminological probabilistic knowledge), which
s semantically interpreted as in Lehmann’s lexicographic default
ntailment [72].

The notion of probabilistic lexicographic entailment [85,87] is
n entailment relation for reasoning from statistical knowledge
nd degrees of belief, which has very nice features [87]. In par-
icular, it shows a similar behavior as reference-class reasoning in
number of uncontroversial examples.1 But it also avoids many

rawbacks of reference-class reasoning (which are pointed out
n [5,87]): differently from reference-class reasoning, probabilistic
exicographic entailment can handle complex scenarios and even
urely probabilistic subjective knowledge as input, and probabilis-
ic lexicographic entailment draws conclusions in a global way from
ll the available knowledge as a whole. Furthermore, probabilistic
exicographic entailment also has very nice nonmonotonic proper-
ies, which are essentially inherited from Lehmann’s lexicographic
ntailment [72]. In particular, it realizes an inheritance of proper-
ies along subclass relationships, where more specific properties
verride less specific properties, without showing the problem of
nheritance blocking (where properties are not inherited to sub-
lasses that are exceptional relative to some other properties). For
xample, under probabilistic lexicographic entailment, the default
nowledge (1) “generally, cars do not have a red color” and (2) “gen-
rally, sports cars have a red color”, and the probabilistic knowledge
3) “cars have four wheels with a probability of at least 0.9” imply
hat sports cars have four wheels with a probability of at least
.9. That is, the property of having four wheels with a probabil-

ty of at least 0.9 is inherited from cars down to sports cars, even
hough sports cars are exceptional cars relative to the property of
aving a red color. As for general nonmonotonic properties, prob-
bilistic lexicographic entailment satisfies (probabilistic versions
f) the rationality postulates by Kraus et al. [69], the property
f rational monotonicity, and some irrelevance, conditioning, and
nclusion properties. For example, as for the property of irrelevance,
nder probabilistic lexicographic entailment, the above sentence
3) implies that also red cars have four wheels with a probability of
t least 0.9. That is, the property of having a red color is irrelevant
o the property of having four wheels with a probability of at least
.9. All these quite appealing features carry over to the probabilis-
ic description logic P- SHOIN(D). See especially [87] for further
etails and background on probabilistic lexicographic entailment.

.1. Syntax

We now introduce the notion of a probabilistic knowledge base.
ith the statistics of a reference class, which is informally defined as a set of individ-
als that contains the particular individual and about which we have some statistics.

f there are several reference classes with conflicting statistics, then the narrowest
ne and its statistics are preferred. Even though reference-class reasoning has also
een criticized in the literature, there are several uncontroversial examples, where

t describes exactly the expected inference results.
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robabilistic terminological knowledge, and (ii) a collection of
ABoxes, which encode probabilistic assertional knowledge about a
ertain set of individuals. To this end, we partition the set of individ-
als I into the set of classical individuals IC and the set of probabilistic

ndividuals IP , and we associate with every probabilistic individual a
ABox. That is, probabilistic individuals are those individuals in I for
hich we explicitly store some probabilistic assertional knowledge

n a PABox.
We first define conditional constraints as follows. We assume

finite nonempty set C of basic classification concepts (or basic c-
oncepts for short), which are (not necessarily atomic) concepts
n SHOIN(D) that are free of individuals from IP . Informally, they
re the relevant description logic concepts for defining probabilis-
ic relationships. The set of classification concepts (or c-concepts)
s inductively defined as follows. Every basic c-concept �∈ C is a
-concept. If� and are c-concepts, then ¬� and (� � ) are also c-
oncepts. We often write (� � ) to abbreviate¬(¬� � ¬ ), as usual.

conditional constraint is an expression of the form ( |�)[l, u],
here � and  are c-concepts, and l and u are reals from [0,1].

nformally, ( |�)[l, u] encodes that the probability of given � lies
etween l and u.

We next define PTBoxes, PABoxes, and probabilistic knowledge
ases as follows:

A PTBox PT = (T, P) consists of a classical (description logic)
knowledge base T and a finite set of conditional constraints P;
A PABox P is a finite set of conditional constraints;
A probabilistic knowledge base K = (T, P, (Po)o∈ IP ) relative to IP
consists of a PTBox PT = (T, P) and one PABox Po for every prob-
abilistic individual o∈ IP .

Note that the meaning of a conditional constraint ( |�)[l, u]
epends on whether it belongs to P or to Po for some probabilistic

ndividual o∈ IP:

Each ( |�)[l, u] in P informally encodes that “generally, if an
object belongs to �, then it belongs to  with a probability in
[l, u]”. For example, (∃R.{o}|�)[l, u] in P, where o∈ IC and R∈ RA,
encodes that “generally, if an object belongs to�, then it is related
to o by R with a probability in [l, u]”.
Each ( |�)[l, u] in Po, where o∈ IP , informally encodes that “if o
belongs to �, then o belongs to  with a probability in [l, u]”.
For example, (∃R.{o′}|�)[l, u] in Po, where o∈ IP , o′ ∈ IC , and R∈ RA,
expresses that “if o belongs to �, then o is related to o′ by R with
a probability in [l, u]”.

So, a probabilistic knowledge base K = (T, P, (Po)o∈ IP ) extends a
lassical knowledge base T by probabilistic terminological knowl-
dge P and probabilistic assertional knowledgePo about everyo∈ IP .
hat is, P represents our statistical knowledge about concepts, while
very Po represents our degrees of belief about o.

Observe that the axioms in T and the conditional constraints in
very Po with o∈ IP are strict (that is, they must always hold), while
he conditional constraints in P are defeasible (that is, they may
ave exceptions and thus do not always have to hold), since T ∪ P
ay not always be satisfiable as a whole in combination with our

egrees of belief (and then we ignore some elements of P).
Consequently, a conditional constraint ( |�)[1,1] in P encodes

generally, if an object belongs to�, then it also belongs to ”, while
 |�)[1,1] in Po encodes “if o belongs to �, then o also belongs to

”. The latter is equivalent to the implication o : �⇒ o :  , while

he former is in general not equivalent to � �  .

xample 4.1 (Car Example continued). We now extend the clas-
ical description logic knowledge base T given in Example 3.1

f
t
c
v
(

and Agents on the World Wide Web 6 (2008) 291–308 297

y terminological default, terminological probabilistic, and asser-
ional probabilistic knowledge to a probabilistic knowledge base
= (T, P, (Po)o∈ IP ). We assume an additional atomic concept Has-

ourWheels and an additional datatype role HasColor between cars
nd the elementary datatype colors, which has a finite set of color
ames as data values.

The terminological default knowledge (1) “generally, cars do not
ave a red color” and (2) “generally, sports cars have a red color”,
nd the terminological probabilistic knowledge (3) “cars have four
heels with a probability of at least 0.9”, can be expressed by the

ollowing conditional constraints in P:

(1) (¬∃HasColor.{red}|Car)[1,1],
(2) (∃HasColor.{red}|SportsCar)[1,1],
(3) (HasFourWheels|Car)[0.9,1].

uppose we want to encode some probabilistic information about
ohn’s car (which we have not seen so far). Then, the set of prob-
bilistic individuals IP contains the individual John’s car, and the
ssertional probabilistic knowledge (4) “John’s car is a sports car
ith a probability of at least 0.8” (we know that John likes sports

ars) can be expressed by the following conditional constraint in
John′s car:

4) (SportsCar|�)[0.8,1].

.2. Semantics

In this section, we define the semantics of P- SHOIN(D). After
ome preliminaries, we introduce the notions of consistency and
exicographic entailment for probabilistic knowledge bases, which
re based on the notions of consistency and lexicographic entail-
ent, respectively, in probabilistic default reasoning [85,87].

.2.1. Preliminaries
We now define (possible) objects and probabilistic interpre-

ations, which are certain sets of basic c-concepts respectively
robability functions on the set of all (possible) objects. We also
efine the satisfaction of classical knowledge bases and conditional
onstraints in probabilistic interpretations.

A (possible) object o is a set of basic c-concepts �∈ C such that
i : � |�∈ o} ∪ {i : ¬� |�∈ C \ o} is satisfiable, where i is a new indi-
idual. Informally, every object o represents an individual i that
s fully specified on C in the sense that o belongs (respectively,
oes not belong) to every c-concept �∈ o (respectively, �∈ C \ o).
e denote by OC the set of all objects relative to C. An object o

atisfies a classical knowledge base T, or o is a model of T, denoted
� T , iff T ∪ {i : � |�∈ o} ∪ {i : ¬� |�∈ C \ o} is satisfiable, where i is
new individual. An object o satisfies a basic c-concept �∈ C, or o is
model of �, denoted o � �, iff �∈ o. The satisfaction of c-concepts
y objects is inductively extended to all c-concepts, as usual, by
i) o � ¬� iff o � � does not hold, and (ii) o � � � iff o � � and
�  . It is not difficult to verify that a classical knowledge base T is

atisfiable iff an object o∈OC exists that satisfies T.
A probabilistic interpretation Pr is a probability function on OC

that is, a mapping Pr : OC → [0,1] such that all Pr(o) with o∈OC
um up to 1). We say Pr satisfies a classical knowledge base T, or Pr
s a model of T, denoted Pr � T , iff o � T for every o∈OC such that
r(o)> 0. We define the probability of a c-concept and the satis-
action of conditional constraints in probabilistic interpretations as

ollows. The probability of a c-concept � in a probabilistic interpre-
ation Pr denoted Pr(�), is the sum of all Pr(o) such that o � �. For
-concepts� and such that Pr(�)> 0, we write Pr( |�) to abbre-
iate Pr(� � )/Pr(�). We say Pr satisfies a conditional constraint
�| )[l, u], or Pr is a model of ( |�)[l, u], denoted Pr � ( |�)[l, u],
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consequences of K = (T, P, (Po)o∈ IP ), which informally say that
John’s car is a sports car, has a red color, and has four wheels with
98 T. Lukasiewicz, U. Straccia / Web Semantics: Science, Se

ff Pr(�) = 0 or Pr( |�) ∈ [l, u]. We say Pr satisfies a set of condi-
ional constraints F, or Pr is a model of F, denoted Pr � F, iff Pr � F
or all F ∈F. It is not difficult to verify that a classical knowledge
ase T is satisfiable iff there exists a probabilistic interpretation that
atisfies T.

.2.2. Consistency
The notion of consistency for PTBoxes and probabilistic knowl-

dge bases is based on the notion of consistency in probabilistic
efault reasoning [85,87].

We first give some preparative definitions. A probabilistic inter-
retation Pr verifies a conditional constraint ( |�)[l, u] iff Pr(�) = 1
nd Pr( ) ∈ [l, u], that is, iff Pr(�) = 1 and Pr � ( |�)[l, u]. We say
r falsifies ( |�)[l, u] iff Pr(�) = 1 and Pr � ( |�)[l, u]. A set of con-
itional constraints F tolerates a conditional constraint F under a
lassical knowledge base T iff T ∪ F has a model that verifies F.

A PTBox PT = (T, P) is consistent iff (i) T is satisfiable and (ii)
here exists an ordered partition (P0, . . . , Pk) of P such that each
i with i∈ {0, . . . , k} is the set of all F ∈P \ (P0 ∪ · · · ∪ Pi−1) that are
olerated under T by P \ (P0 ∪ · · · ∪ Pi−1). Informally, condition (ii)

eans that P has a natural ordered partition into collections of
onditional constraints of increasing specificities such that every
ollection is locally consistent. That is, any inconsistencies can be
aturally resolved by preferring more specific pieces of knowl-
dge to less specific ones. For example, the inconsistency between
¬∃HasColor.{red}|Car)[1,1] and (∃HasColor.{red}|SportsCar)[1,1]
hen reasoning about sports cars is naturally resolved by prefer-

ing the latter to the former. We call the above (unique) ordered
artition (P0, . . . , Pk) of P the z-partition of PT . A probabilistic
nowledge base K = (T, P, (Po)o∈ IP ) is consistent iff (i) PT = (T, P)
s consistent and (ii) T ∪ Po is satisfiable for every probabilistic
ndividual o∈ IP . Informally, (ii) says that the strict knowledge
n T must be compatible with the strict degrees of belief in Po,
or every probabilistic individual o. Observe that (i) involves T
nd P, while (ii) involves T and Po, for every probabilistic indi-
idual o. This separate treatment of P and the Po’s is due to
he fact that P represents probabilistic terminological knowl-
dge, while each Po represents probabilistic assertional knowledge
about o).

xample 4.2 (Car Example continued). The probabilistic knowl-
dge base K = (T, P, (Po)o∈ IP ) of Example 4.1 is consistent, since
T = (T, P) is consistent, and T ∪ Po is satisfiable for every proba-
ilistic individual o∈ IP = {John′s car}. Observe that the z-partition
f (T, P) is given by (P0, P1), where P0 = {( |�)[l, u] ∈P |� = Car}
nd P1 = {( |�)[l, u] ∈P |� = SportsCar}.

.2.3. Lexicographic entailment
The notion of lexicographic entailment for probabilistic knowl-

dge bases is based on lexicographic entailment in probabilistic
efault reasoning [85,87]. In the sequel, let K = (T, P, (Po)o∈ IP )
e a consistent probabilistic knowledge base. We first define
lexicographic preference relation on probabilistic interpreta-

ions, which is then used to define the notion of lexicographic
ntailment for sets of conditional constraints under PTBoxes.
e finally define the notion of lexicographic entailment for

eriving statistical knowledge and degrees of belief about prob-
bilistic objects from PTBoxes and probabilistic knowledge bases,
espectively.

We use the (unique) z-partition (P0, . . . , Pk) of (T, P) (see Section

.2.2) to define a lexicographic preference relation on proba-
ilistic interpretations Pr and Pr′: we say Pr is lexicographically
referable (or lex-preferable) to Pr′ iff some i∈ {0, . . . , k} exists
uch that |{F ∈Pi |Pr � F}|> |{F ∈Pi |Pr′ � F}| and |{F ∈Pj |Pr � F}| =
{F ∈Pj |Pr′ � F}| for all i < j ≤ k. Roughly speaking, this preference

p
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elation implements the idea of preferring more specific pieces of
nowledge to less specific ones in the case of local inconsistencies.
t can thus be used for ignoring the latter when drawing conclu-
ions in the case of local inconsistencies. A model Pr of a classical
nowledge base T and a set of conditional constraints F is a lexico-
raphically minimal (or lex-minimal) model of T ∪ F iff no model of
∪ F is lex-preferable to Pr.

We define the notion of lexicographic entailment of conditional
onstraints from sets of conditional constraints under PTBoxes as
ollows. A conditional constraint ( |�)[l, u] is a lexicographic con-
equence (or lex-consequence) of a set of conditional constraints

under a PTBox PT , denoted F ‖∼lex ( |�)[l, u] under PT , iff
r( ) ∈ [l, u] for every lex-minimal modelPr of T ∪ F ∪ {(�|�)[1,1]}.
e say ( |�)[l, u] is a tight lexicographic consequence (or tight lex-

onsequence) of F under PT , denoted F ‖∼lex
tight

( |�)[l, u] under PT ,
ff l (respectively, u) is the infimum (respectively, supremum) of
r( ) subject to all lex-minimal models Pr of T ∪ F ∪ {(�|�)[1,1]}.
ote that [l, u] = [1,0] (where [1,0] represents the empty inter-
al) when no such model Pr exists. Furthermore, for inconsistent
TBoxes PT , we define F ‖∼lex ( |�)[l, u] and F ‖∼lex

tight
( |�)[1,0]

nder PT for all sets of conditional constraints F and all conditional
onstraints ( |�)[l, u].

We now define which statistical knowledge and degrees of
elief follow under lexicographic entailment from PTBoxes PT
nd probabilistic knowledge basesK = (T, P, (Po)o∈ IP ), respectively.

conditional constraint F is a lex-consequence of PT , denoted
T ‖∼lex F , iff ∅ ‖∼lex F under PT . We say F is a tight lex-consequence
f PT , denoted PT ‖∼lex

tight
F , iff ∅ ‖∼lex

tight
F under PT . A conditional con-

traint F for a probabilistic individual o∈ IP is a lex-consequence of
, denoted K ‖∼lex F , iff Po ‖∼lex F under PT = (T, P). We say F is a

ight lex-consequence of K, denoted K ‖∼lex
tight

F , iff Po ‖∼lex
tight

F under
T = (T, P).

xample 4.3 (Car Example continued). Consider again the prob-
bilistic knowledge base K = (T, P, (Po)o∈ IP ) of Example 4.1. The
ollowing are some (terminological default and terminological
robabilistic) tight lex-consequences of PT = (T, P):

(¬∃HasColor.{red}|Car)[1,1],
(∃HasColor.{red}|SportsCar)[1,1],
(HasFourWheels|Car)[0.9,1],
(¬∃HasColor.{red}|Roadster)[1,1],
(HasFourWheels|SportsCar)[0.9,1],
(HasFourWheels|Roadster)[0.9,1].

ence, in addition to the sentences (1) to (3) directly encoded in
, we also conclude “generally, roadsters do not have a red color”,
sports cars have four wheels with a probability of at least 0.9”,
nd “roadsters have four wheels with a probability of at least 0.9”.
bserve here that the default property of not having a red color and

he probabilistic property of having four wheels with a probability
f at least 0.9 are inherited from cars down to roadsters. Roughly,
he tight lex-consequences of PT = (T, P) are given by all those con-
itional constraints that (a) are either in P, or (b) can be constructed
y inheritance along subconcept relationships from the ones in P
nd are not overridden by more specific pieces of knowledge in P.

The following conditional constraints for the probabilistic
ndividual John’s car are some (assertional probabilistic) tight lex-
robabilities of at least 0.8, 0.8, and 0.72, respectively:

(SportsCar|�)[0.8,1],
(∃HasColor.{red}|�)[0.8,1],
(HasFourWheels|�)[0.72,1].
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.3. Main reasoning problems

The main reasoning problems in P- SHOIN(D) are summarized
y the following decision and computation problems (where every
ower and upper bound in the PTBox PT = (T, P), the probabilis-
ic knowledge base K = (T, P, (Po)o∈ IP ), and the set of conditional
onstraints F is rational):

TBox Consistency (PTCon): Given a PTBox PT = (T, P), decide
whether PT is consistent.

Probabilistic Knowledge
Base Consistency (PKBCon): Given a probabilistic knowledge base

K = (T, P, (Po)o∈ IP ), decide whetherK
is consistent.

Tight Lexicographic

Entailment (TLexEnt): Given a PTBox PT = (T, P), a finite
set of conditional constraints F, and
two c-concepts � and  , compute
the rational numbers l, u∈ [0,1] such
that F ‖∼lex

tight
( |�)[l, u] under PT .

Some important special cases of TLexEnt are given as fol-
ows: (PCSub) given a consistent PTBox PT and two c-concepts

and  , compute the rational numbers l, u∈ [0,1] such that
T ‖∼lex

tight
( |�)[l, u]; (PCRSub) given a consistent PTBox PT , a

-concept �, a classical individual o∈ IC , and an abstract role
∈ RA, compute the rational numbers l, u∈ [0,1] such that
T ‖∼lex

tight
(∃R.{o}|�)[l, u]; (PCMem) given a consistent probabilis-

ic knowledge base K, a probabilistic individual o∈ IP , and a
-concept  , compute l, u∈ [0,1] such that K ‖∼lex

tight
( |�)[l, u]

or o; and (PRMem) given a consistent probabilistic knowledge
ase K, a classical individual o′ ∈ IC , a probabilistic individual
∈ IP , and an abstract role R∈ RA, compute l, u∈ [0,1] such that
‖∼lex
tight

(∃R.{o′}|�)[l, u] for o.
Another important decision problem in P-SHOIN(D) is
robabilistic Concept Satisfiability (PCSat): Given a consistent
TBox PT and a c-concept �, decide whether PT ‖/∼lex(�|�)[0,0].
his problem is reducible to CSat (see Section 3.3), since
T, P) ‖/∼lex(�|�)[0,0] iff T ‖/∼ � �⊥.

There exists an algorithm for deciding whether a PTBox (respec-
ively, probabilistic knowledge base) in P-SHOIN(D) is consistent,
hich is based on a reduction to deciding whether a classi-

al knowledge base in SHOIN(D) is satisfiable and to deciding
hether a system of linear constraints is solvable. More specifi-

ally, one has to solve a sequence of solvability problems of systems
f linear constraints, whose variables are computed by deciding
lassical knowledge base satisfiability in SHOIN(D) (see [90] for
urther details). This shows that the two consistency problems in
-SHOIN(D) are both decidable. Furthermore, there is a similar
lgorithm for computing tight intervals under lexicographic entail-
ent in P-SHOIN(D), which is based on a reduction to deciding

lassical knowledge base satisfiability in SHOIN(D) and to solving
inear optimization problems (see [90]). Thus, also lexicographic
ntailment in P-SHOIN(D) is computable. As for the computational
omplexity, deciding the two consistency problems in P-SHOIN(D)
s complete for the complexity class NEXP, while computing tight
ntervals under lexicographic entailment in P- SHOIN(D) belongs

o FPNEXP[90].

Although there is no implementation of P- SHOIN(D) to date,
here are already implementations of its predecessor P- SHOQ(D)
see [99]) and of a probabilistic description logic based on proba-
ilistic default reasoning as in [85,87] (see [66]).
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.4. Main applications

As pointed out in [14,15], there is a plethora of applications with
n urgent need for handling probabilistic knowledge in ontologies,
specially in areas like medicine, biology, defense, and astronomy.
urthermore, there are strong arguments for the critical need of
ealing with probabilistic uncertainty in ontologies in the Semantic
eb, some of which are briefly summarized as follows.

In addition to being logically related, the concepts of an ontology
are generally also probabilistically related. For example, two con-
cepts either may be logically related via a subset or disjointness
relationship, or they may show a certain degree of overlap. Proba-
bilistic ontologies allow for quantifying these degrees of overlap,
reasoning about them, and using them in semantic-web applica-
tions. In particular, probabilistic ontologies are successfully used
in information retrieval for an increased recall [146,59] (see also
below). The degrees of concept overlap may also be exploited in
personalization and recommender systems.
Rather than consisting of one standardized overall ontology,
the Semantic Web will consist of a huge collection of different
ontologies. Hence, in semantic-web applications such as auto-
mated reasoning and information retrieval, one has to align
the concepts of different ontologies, which is called ontology
matching / mapping [30]. In general, the concepts of two differ-
ent ontologies do not match exactly, and we have to deal with
degrees of concept overlap as above, which are determined by
automatic or semi-automatic tools or experts. These degrees of
concept overlap are then represented in probabilistic ontologies,
which thus allows for inference about the degrees of overlap
between other concepts and about probabilistic instance rela-
tionships [104,98] (see also Section 4.5.2).
Like the current Web, the Semantic Web will necessarily contain
ambiguous and controversial pieces of information in different
web sources. This can be handled via probabilistic data integra-
tion by associating with every web source a probability describing
its degree of reliability [148,45]. As resulting pieces of data, such a
probabilistic data integration process necessarily produces prob-
abilistic facts, that is, probabilistic knowledge at the instance
level. Such probabilistic instance relationships can be encoded in
probabilistic ontologies and there be enhanced by further clas-
sical and/or terminological probabilistic knowledge, which then
allows for inference about other probabilistic instance relation-
ships.

An important application for probabilistic ontologies (and thus
robabilistic description logics and ontology languages) is espe-
ially information retrieval. In particular, Subrahmanian’s group
146,59] explores the use of probabilistic ontologies in rela-
ional databases. They propose to extend relations by associating
ith every attribute a constrained probabilistic ontology, which
escribes relationships between terms occurring in the domain of
hat attribute. An extension of the relational algebra then allows
or an increased recall (which is the proportion of documents rele-
ant to a search query in the collection of all returned documents)
n information retrieval. In closely related work, Mantay et al. [95]
ropose a probabilistic least common subsumer operation, which

s based on a probabilistic extension of the description logic ALN.
hey show that applying this approach in information retrieval
llows for reducing the amount of retrieved data and thus for avoid-

ng information flood. Another closely related work by Holi and
yvönen [48,49] shows how degrees of overlap between concepts
an be modeled and computed efficiently using Bayesian networks
ased on RDF(S) ontologies. Such degrees of overlap indicate how
ell an individual data item matches the query concept, and can
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hus be used for measuring the relevance in information retrieval
asks. Finally, Weikum et al. [151] and Thomas and Sheth [142]
escribe the use of probabilistic ontologies in information retrieval
rom a more general perspective.

.5. Other probabilistic ontology languages

To our knowledge, there are no other approaches to proba-
ilistic description logics for the Semantic Web in the literature.
urthermore, although there are several previous approaches to
robabilistic description logics without semantic web background,
- SHOIN(D) is the most expressive probabilistic description logic,
oth in terms of the generalized classical description logic and in
erms of the supported forms of terminological and assertional
robabilistic knowledge. That is, previous probabilistic description

ogics generalize less expressive classical description logics, and
hey only allow for some facets of the terminological and asser-
ional probabilistic knowledge of this paper, but not for all of them
t the same time. There are also several probabilistic extensions of
eb ontology languages in the literature. In this section, we give an

verview of all these approaches.

.5.1. Probabilistic description logics
Other approaches to probabilistic description logics can be clas-

ified according to the generalized classical description logics, the
upported forms of probabilistic knowledge, the underlying prob-
bilistic semantics, and the reasoning techniques.

One of the earliest approaches to probabilistic description logics
s due to Heinsohn [47], who presents a probabilistic extension of
he description logic ALC, which allows to represent terminolog-
cal probabilistic knowledge about concepts and roles, and which
s based on the notion of logical entailment in probabilistic logics,
imilar to [100,2,34,84]. Heinsohn [47], however, does not allow
or assertional (classical or probabilistic) knowledge about concept
nd role instances. The main reasoning problems are deciding the
onsistency of probabilistic terminological knowledge bases and
omputing logically entailed tight probability intervals. Heinsohn
roposes a sound and complete global reasoning technique based
n classical reasoning in ALC and linear programming, as well as
sound but incomplete local reasoning technique based on the

terative application of local inference rules.
Another early approach to probabilistic description logics is due

o Jaeger [61], who also proposes a probabilistic extension of the
escription logicALC, which allows for terminological probabilistic
nowledge about concepts and roles, and assertional probabilis-
ic knowledge about concept instances, but does not support
ssertional probabilistic knowledge about role instances (but he
entions a possible extension in this direction). The entailment of

erminological probabilistic knowledge from terminological prob-
bilistic knowledge is based on the notion of logical entailment in
robabilistic logic, while the entailment of assertional probabilis-
ic knowledge from terminological and assertional probabilistic
nowledge is based on a cross-entropy minimization relative to ter-
inological probabilistic knowledge. The main reasoning problems

re terminological probabilistic consistency and inference, which
re solved by linear programming, and assertional probabilistic
onsistency and inference, which are solved by an approximation
lgorithm.

The recent work by Dürig and Studer [29] presents a further
robabilistic extension ofALC, which is based on a model-theoretic

emantics as in probabilistic logics, but which only allows for asser-
ional probabilistic knowledge about concept and role instances,
nd not for terminological probabilistic knowledge. The paper
lso explores independence assumptions for assertional proba-
ilistic knowledge. The main reasoning problem is deciding the

o
a
a
a
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onsistency of assertional probabilistic knowledge, but neither an
lgorithm nor a decidability result is given.

Jaeger’s recent work [62] focuses on interpreting probabilistic
oncept subsumption and probabilistic role quantification through
tatistical sampling distributions, and develops a probabilistic ver-
ion of the guarded fragment of first-order logic. The semantics is
ifferent from the semantics of all the other probabilistic descrip-
ion logics in this paper, since it is based on probability distributions
ver the domain, and not on the more commonly used probability
istributions over a set of possible worlds. The paper proposes a
ound Gentzen-style sequent calculus for the logic, but it neither
roves the completeness of this calculus nor decidability in general.

Koller et al.’s work [68] presents the probabilistic description
ogic P-Classic, which is a probabilistic generalization (of a vari-
nt) of the description logic Classic. Similar to Heinsohn’s work
47], it allows for encoding terminological probabilistic knowledge
bout concepts, roles, and attributes (via so-called p-classes), but
t does not support assertional (classical or probabilistic) knowl-
dge about instances of concepts and roles. However, in contrast
o [47], its probabilistic semantics is based on a reduction to
ayesian networks. The main reasoning problem is to determine the
xact probabilities for conditionals between concept expressions in
anonical form. This problem is solved by a reduction to inference in
ayesian networks. As an important feature of P-Classic, the above
roblem can be solved in polynomial time, when the underlying
ayesian network is a polytree. Note that a recent implementation
f P-Classicis described in [65].

Closely related work by Yelland [153] proposes a probabilistic
xtension of a description logic close to FL, whose probabilistic
emantics is also based on a reduction to Bayesian networks, and
t applies this approach to market analysis. The approach allows
or encoding terminological probabilistic knowledge about con-
epts and roles, but it does not support assertional (classical or
robabilistic) knowledge about instances of concepts and roles.
ike in Koller et al.’s work [68], the main reasoning problem is to
etermine the exact probabilities for conditionals between con-
epts, which is solved by a reduction to inference in Bayesian
etworks.

.5.2. Probabilistic web ontology languages
The literature contains several probabilistic generalizations of

eb ontology languages. Many of these approaches focus especially
n combining the web ontology language OWL with probabilistic
ormalisms based on Bayesian networks.

In particular, da Costa [14], da Costa and Laskey [15], and da
osta et al. [16] suggest a probabilistic generalization of OWL, called
R-OWL, whose probabilistic semantics is based on multi-entity
ayesian networks (MEBNs). The latter are a Bayesian logic that
ombines first-order logic with Bayesian networks. Roughly speak-
ng, PR-OWL represents knowledge as parameterized fragments of
ayesian networks. Hence, it can encode probability distributions
n the interpretations of an associated first-order theory as well as
epeated structure.

In [18,19], Ding et al. propose a probabilistic generalization of
WL, called BayesOWL, which is based on standard Bayesian net-
orks. BayesOWL provides a set of rules and procedures for the
irect translation of an OWL ontology into a Bayesian network,
nd it also provides a method for incorporating available prob-
bility constraints when constructing the Bayesian network. The
enerated Bayesian network, which preserves the semantics of the

riginal ontology and which is consistent with all the given prob-
bility constraints, supports ontology reasoning, both within and
cross ontologies, as Bayesian inferences. In [104,19], Ding et al.
lso describe an application of the BayesOWL approach in ontology
apping.
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6. Vagueness and description logics
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In closely related work, Mitra et al. [98] describe an imple-
ented technique, called Omen, to enhancing existing ontology
appings by using a Bayesian network to represent the influences

etween potential concept mappings across ontologies. More con-
retely, Omen is based on a simple ontology model similar to RDF
chema. It uses a set of meta-rules that capture the influence of
he ontology structure and the semantics of ontology relations, and

atches nodes that are neighbors of already matched nodes in the
wo ontologies.

Yang and Calmet [152] present an integration of the web ontol-
gy language OWL with Bayesian networks, called OntoBayes. The
pproach makes use of probability and dependency-annotated
WL to represent uncertain information in Bayesian networks. The
ork also describes an application in risk analysis for insurance and
atural disaster management. Pool and Aikin [107] also provide
method for representing uncertainty in OWL ontologies, while

ukushige [35] proposes a basic framework for representing prob-
bilistic relationships in RDF. Nottelmann and Fuhr [101] present
wo probabilistic extensions of variants of OWL Lite, along with a

apping to locally stratified probabilistic Datalog.
Another important work is due to Udrea et al. [147], who present

probabilistic generalization of RDF, which allows for representing
erminological probabilistic knowledge about classes and asser-
ional probabilistic knowledge about properties of individuals. They
rovide a technique for assertional probabilistic inference in acyclic
robabilistic RDF theories, which is based on the notion of logical
ntailment in probabilistic logic, coupled with a local probabilistic
emantics. They also provide a prototype implementation of their
lgorithms.

. Possibilistic uncertainty and description logics

Similar to probabilistic extensions of description logics, possi-
ilistic extensions of description logics have been developed by
ollunder [53] and Dubois et al. [22]. In the sequel, we implicitly
ssume the description logic SHOIN(D) as underlying description
ogic, but any other (decidable) description logic can be used as

ell.

.1. Syntax

A possibilistic axiom is of the form P˛ ≥ l or N˛ ≥ l, where ˛ is a
lassical description logic axiom, and l is a real number from [0,1]. A
ossibilistic RBox (respectively, TBox, ABox) is a finite set of possibilis-
ic axioms P˛ ≥ l or N˛ ≥ l, where ˛ is an RBox (respectively, TBox,
Box) axiom. A possibilistic knowledge base K = (R, T,A) consists
f a possibilistic RBox R, a possibilistic TBox T, and a possibilistic
Box A. The following example from [53] illustrates possibilistic
nowledge bases.

xample 5.1 (Car example continued). The following possibilistic
nowledge base K = (R, T,A) encodes some possibilistic knowl-
dge about cars and rich people. Let R = ∅. The TBox T represents
he possibilistic terminological knowledge that “every person own-
ng a Porsche is either rich or a car fanatic with a necessity of at least
.8” and “every rich person is a golfer with a possibility of at least
.7”:

= {N ∃owns.Porsche � richPerson � carFanatic ≥ 0.8,
P richPerson � golfer ≥ 0.7}.

urthermore, the ABox A expresses the possibilistic assertional
nowledge that “Tom owns a 911 with necessity 1”, “a 911 is a
orsche with necessity 1”, and “Tom is not a car fanatic with a

g
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ecessity of at least 0.7”:

= {N (Tom,911) : owns ≥ 1,N 911 : Porsche ≥ 1,

N Tom : ¬carFanatic ≥ 0.7}.

.2. Semantics

Let � denote the set of all classical description logic interpre-
ations. A possibilistic interpretation is a mapping � : � → [0,1]. In
he sequel, we assume that � is normalized, that is, that �(I) = 1
or some I∈ �. The possibility of a description logic axiom ˛ in a
ossibilistic interpretation �, denoted Poss(˛), is then defined by
oss(˛) = max{�(I) | I∈ �, I � ˛} (where max ∅ = 0), and the neces-
ity of ˛, denoted Nec(˛), is defined by Nec(˛) = 1 − Poss(¬˛).

A possibilistic interpretation � satisfies a possibilistic axiom
˛ ≥ l (respectively, N˛ ≥ l), or� is a model of P˛ ≥ l (respectively,
˛ ≥ l), denoted� � P˛ ≥ l (respectively,� � N˛ ≥ l), iff Poss(˛) ≥

(respectively,Nec(˛) ≥ l). The notion of satisfiability of possibilistic
nowledge bases and the notions of logical and tight logical conse-
uences of possibilistic axioms from possibilistic knowledge bases
re then defined as usual [53,22].

xample 5.2 (Car example continued). Consider again the possi-
ilistic knowledge base K of Example 5.2. It is not difficult to verify
hat K is satisfiable and logically implies that “Tom is a golfer with
possibility of at least 0.7” [53], that is,

� P Tom : golfer ≥ 0.7.

.3. Main reasoning problems

The main reasoning problems related to possibilistic descrip-
ion logics are deciding whether a possibilistic knowledge base is
atisfiable, deciding whether a possibilistic axiom is a logical conse-
uence of a possibilistic knowledge base, and computing the tight
ower and upper bounds entailed by a possibilistic knowledge base
or the necessity and the possibility of a classical description logic
xiom. As shown by Hollunder [53], deciding logical consequences,
nd thus also deciding satisfiability and computing tight lower and
pper bounds can be reduced to deciding logical consequences

n classical description logics. A recent implementation of reason-
ng in possibilistic description logics using KAON22 is reported in
109,108].

.4. Main applications

Liau and Yao [80] report on an application of possibilistic
escription logics in information retrieval. More concretely, they
efine a possibilistic generalization of the description logicALC and
how that it can be used in typical information retrieval problems,
uch as query relaxation, query restriction, and exemplar-based
etrieval. Possibilistic description logics can also be used for han-
ling inconsistencies in ontologies [109,108]. Another important
pplication of possibilistic description logics is the representation
f user preferences in the Semantic Web. For example, the recent
ork by Hadjali et al. [38] shows that possibilistic logic can be nicely
sed for encoding user preferences in the context of databases.
In this section, we define the syntax and the semantics of a fuzzy
eneralization ofSHOIN(D), called fuzzySHOIN(D). We recall here

2 http://kaon2.semanticweb.org/.

http://kaon2.semanticweb.org/
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ig. 1. (a) Trapezoidal function trz(x; a, b, c, d), (b) triangular function tri(x; a, b, c),
c) left-shoulder function ls(x; a, b), and (d) right-shoulder function rs(x; a, b).

he semantics given in [131,134], which is based on arbitrary but
xed combination functions ⊗, ⊕, �, and � (see Section 2.3). Note
hat the language here subsumes the one described in [119], which
as been developed in parallel. After describing the main reasoning
roblems in vague description logics, we summarize their main
pplications, and we also give an overview on other vague ontology
anguages.

.1. Syntax

We now define the syntax of fuzzy SHOIN(D). We first define
uzzy datatype theories and fuzzy modifiers, and then fuzzy axioms
nd fuzzy knowledge bases.

.1.1. Fuzzy datatype theories
We have seen that SHOIN(D) allows to reason with datatypes,

uch as strings and integers, using the so-called concrete domains.
n the fuzzy generalization, concrete domains and thus datatypes

ay be based on fuzzy sets as well. More specifically, a fuzzy
atatype theory D = (�D, ·D) is defined in the same way as a clas-
ical datatype theory except that ·D now assigns to every n-ary
atatype predicate an n-ary fuzzy relation over �D. For example,

ike in SHOIN(D), the datatype predicate ≤18 may be a unary crisp
redicate over the natural numbers denoting the set of integers
maller than or equal to 18, that is, ≤18 : Natural→ [0,1] and

18(x) =
{

1 if x ≤ 18,
0 otherwise.

hen,

inor = Person � ∃age.≤18 (4)

efines persons, whose age is less than or equal to 18, that is, it
efines minors.

As for non-crisp fuzzy datatype predicates, we recall that in
uzzy set theory and practice, there are many functions for spec-
fying fuzzy set membership degrees. In particular, the triangular,
he trapezoidal, the left-shoulder, and the right-shoulder functions

re simple, but most frequently used to specify fuzzy set member-
hip degrees (see Fig. 1). Using these functions, we may then define,
or example, Young : Natural→ [0,1] to be a fuzzy datatype predi-
ate over the natural numbers denoting the degree of youngness of
person’s age. The fuzzy datatype predicate Young may be defined

c
a
0
o
s
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s Young(x) = ls(x; 10,30). Then,

oungPerson = Person � ∃age.Young (5)

enotes young persons.

.1.2. Fuzzy modifiers
Fuzzy SHOIN(D) also supports fuzzy modifiers, an interest-

ng feature of fuzzy logics. Fuzzy modifiers, like very, more or less,
nd slightly, apply to fuzzy sets to change their membership func-
ion. Formally, a fuzzy modifier m represents a function fm : [0,1] →
0,1]. For example, we may define fvery(x) = x2 and fslightly(x) = √

x.
uzzy modifiers have been considered, e.g., in [52,144]. Syntacti-
ally, if M is a new alphabet for fuzzy modifiers, m∈ M is a fuzzy
odifier, and C is a concept in fuzzy SHOIN(D), then m(C) is a

oncept in fuzzy SHOIN(D) as well. For example, by referring to
xample 3.1, we may define the concept of sports cars as

portsCar = Car � ∃max speed.very(High), (6)

here very is a fuzzy modifier with membership function fvery(x) =
2, and High is a fuzzy datatype predicate over the domain of speed
xpressed in kilometers per hour and may be defined as High(x) =
s(x; 80,250).

.1.3. Fuzzy knowledge bases
We next define fuzzy knowledge bases in fuzzy SHOIN(D). We

rst define concepts and fuzzy axioms in fuzzy SHOIN(D).
Concepts in fuzzy SHOIN(D) are defined in nearly the same way

s concepts in SHOIN(D), except that we now also allow fuzzy
odifiers from a set of fuzzy modifiers M as unary operators on

oncepts. More concretely, Concepts in fuzzy SHOIN(D) are defined
y induction as follows. Every atomic concept A∈ A is a concept, ⊥
nd � are concepts, and if a1, . . . , an ∈ I, then {a1, . . . , an} is a con-
ept (called oneOf). If C, C1, C2 are concepts, R∈ RA ∪ R−

A , andm∈ M,
hen (C1 � C2), (C1 � C2), ¬C, andm(C) are concepts (called conjunc-
ion, disjunction, negation, and fuzzy modification, respectively), as
ell as ∃R.C, ∀R.C, ≥ nR, and ≤ nR (called exists, value, atleast, and

tmost restriction, respectively) for an integer n ≥ 0. If D is an n-
ry datatype predicate and T, T1, . . . , Tn ∈ RD, then ∃T1, . . . , Tn.D,
T1, . . . , Tn.D, ≥ nT , and ≤ nT are concepts (called datatype exists,
alue, atleast, and atmost restriction, respectively) for an integer
≥ 0. We eliminate parentheses as usual. For decidability reasons,
umber restrictions are restricted to simple abstract roles.

We define fuzzy axioms, fuzzy RBoxes, fuzzy TBoxes, fuzzy
Boxes, and fuzzy knowledge bases in fuzzy SHOIN(D) as follows.

A fuzzy RBox R is a finite set of transitivity axioms Trans(R) in
HOIN(D) and fuzzy role inclusion axioms of the form ˛ ≥ n, ˛ ≤ n,
> n, and ˛ < n, where ˛ is a role inclusion axiom in SHOIN(D),

nd n∈ [0,1].
A fuzzy TBox T is a finite set of fuzzy concept inclusion axioms

≥ n,˛ ≤ n,˛ > n, and˛ < n, where˛ is a concept inclusion axiom
n SHOIN(D), and n∈ [0,1].

A fuzzy ABox A consists of a finite set of equality and inequality
xioms a = b and a /= b, respectively, and of fuzzy concept and fuzzy
ole membership axioms of the form ˛ ≥ n, ˛ ≤ n, ˛ > n, or ˛ < n,
here ˛ is a concept or role membership axiom in SHOIN(D), and
∈ [0,1].

For example, a : C ≥ 0.1, (a, b) : R ≤ 0.3, R � S ≥ 0.4, and C �
≤ 0.6 are fuzzy axioms. Informally, from a semantical point of

iew, a fuzzy axiom ˛ ≥ n (respectively, ˛ ≤ n, ˛ > n, and ˛ < n)

onstrains the membership degree of ˛ to be at least (respectively,
t most, greater than, and less than) n. Hence, jim : YoungPerson ≥
.2 says that jim is a YoungPerson with degree at least 0.2. On the
ther hand, a fuzzy concept inclusion axiom of the form C � D ≥ n
ays that the subsumption degree between C and D is at least n.
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A fuzzy axiom is a transitivity, a fuzzy concept inclusion, a fuzzy
ole inclusion, a fuzzy concept membership, a fuzzy role member-
hip, an equality, or an inequality axiom. A fuzzy knowledge base
= (R, T,A) consists of a fuzzy RBox R, a fuzzy TBox T, and a fuzzy

Box A.

.2. Semantics

We now define the semantics of fuzzy SHOIN(D). The main
dea behind it is that concepts and roles are interpreted as fuzzy
ubsets of an interpretation’s domain. Therefore, axioms in fuzzy
HOIN(D), rather being satisfied (true) or unsatisfied (false) in an

nterpretation, are associated with a degree of truth in [0, 1]. In
he following, let ⊗, ⊕, �, and � be an arbitrary but fixed t-norm,
-norm, implication function, and negation function, respectively
see Table 3 for some specific choices). As such, the semantics is a
eneralization of Straccia [125] in which Zadeh Logic has been used
s specific interpretation of the connectives (see Table 3).

A fuzzy interpretation I = (�I, ·I) relative to a fuzzy datatype
heory D = (�D, ·D) consists of a nonempty set �I (called the
omain), disjoint from �D, and of a fuzzy interpretation function
I that coincides with ·D on every data value, datatype, and fuzzy
atatype predicate, and it assigns:

to each individual a∈ I an element aI ∈�I;
to each atomic concept A∈ A a function AI :�I → [0,1];
to each abstract role R∈ RA a function RI :�I ×�I → [0,1];
to each datatype role T ∈ RD a function TI :�I ×�D → [0,1];
to each modifier m∈M the modifier function mI = fm : [0,1] →
[0,1].

The mapping ·I is extended to all roles and concepts as follows
where x, y∈�I):

(R−)I(x, y) = RI(y, x),
�I(x) = 1,
⊥I(x) = 0,

{a1, . . . , an}I(x) =
{

1 if x∈ {a1
I, . . . , anI},

0 otherwise,

(C1 � C2)I(x) = C1
I(x) ⊗ C2

I(x),
(C1 � C2)I(x) = C1

I(x) ⊕ C2
I(x),

(¬C)I(x) = �CI(x),
(m(C))I(x) = mI(CI(x)),
(∃R.C)I(x) = sup

y∈�I
RI(x, y) ⊗ CI(y),

(∀R.C)I(x) = inf
y∈�I

RI(x, y) � CI(y),

(≥ nR)I(x) = sup
y1,...,yn ∈�I,|{y1,...,yn}|=n

⊗n
i=1R

I(x, yi),

(≤ nR)I(x) = inf
y1,...,yn+1 ∈�I,|{y1,...,yn+1}|=n+1

(
⊗n+1
i=1 R

I(x, yi)
)
� 0,

(∃T1, . . . , Tn.D)I(x) = sup
y1,...,yn ∈�D

(
⊗n
i=1Ti

I(x, yi)
)

⊗ DD(y1, . . . , yn),

(∀T1, . . . , Tn.D)I(x) = inf
y1,...,yn ∈�D

(
⊗n
i=1Ti

I(x, yi)
)
� DD(y1, . . . , yn).

e comment briefly some points. The semantics of ∃R.C,

∃R.C)I(x) = sup
y∈�I

RI(x, y) ⊗ CI(y),
s the result of viewing ∃R.C as the open first-order formula
y.FR(x, y) ∧ FC (y) (where F is the obvious translation of roles and
oncepts into first-order logic (FOL) [3]) and the existential quan-
ifier ∃ is viewed as a disjunction over the elements of the domain.

E
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imilarly,

∀R.C)I(x) = inf
y∈�I

RI(x, y) � CI(y)

s related to the open first-order formula ∀y.FR(x, y) → FC (y), where
he universal quantifier ∀ is viewed as a conjunction over the ele-

ents of the domain. However, unlike the classical case, in general,
e do not have that (∀R.C)I = (¬∃R.¬C)I. For example, this holds

n Łukasiewicz logic, but not in Gödel logic. Also interesting is that
see [43]) the axiom � � ¬(∀R.A) � (¬∃R.¬A) has no classical model,
ut it has a fuzzy one. Indeed, in [43], it is shown that in Gödel logic

t has no finite model, but it has an infinite fuzzy model.
Another point concerns the semantics of number restrictions.

he semantics of the concept ≥nR is equivalent to

≥ nR)I(x) = sup
{y1,...,yn}⊆�I

⊗ni=1R
I(x, yi) ⊗ ⊗1≤i<j≤nyi /= yj,

hich is the result of viewing ≥nR as the open first-order formula

y1, . . . , yn · ∧ni=1R(x, yi) ∧ ∧1≤i<j≤nyi /= yj.

hat is, there are at least n distinct elements that satisfy to some
egree R(x, yi). This also guarantees that ∃R.� ≡ (≥ 1R).

Similarly, the semantics of ≤nR is equivalent to

≤ nR)I(x) = inf
{y1,...,yn+1}⊆�I

⊗n+1
i=1 R

I(x, yi) �
(
⊗1≤i<j≤n+1yi = yj

)
,

hich is the result of viewing ≤nR as the open first-order formula

y1, . . . , yn+1 · ∧n+1
i=1 R(x, yi) → ∨1≤i<j≤n+1yi = yj.

ote that not necessarily (≤ nR) ≡ ¬(≥ n+ 1R) holds. The equiva-
ence is true for Zadeh and Łukasiewicz logic, but neither for Gödel
or for Product logic.

We extend ·I to all non-fuzzy axioms as follows (where a, b∈ I
nd v∈�D):

(C � D)I = inf
x∈�I

CI(x) � DI(x),

(R � S)I = inf
x,y∈�I

RI(x, y) � SI(x, y),

(T � U)I = inf
(x,y) ∈�I×�D

TI(x, y) � UI(x, y),

(a : C)I = CI(aI),
((a, b) : R)I = RI(aI, bI),
((a, v) : T)I = TI(aI, vD).

ote here that, e.g., the semantics of a concept inclusion axiom
� D is derived directly from its FOL translation, which is of

he form ∀x.FC (x) → FD(x). This definition is clearly different from
he approaches in which C � D is viewed as ∀x.C(x) ≤ D(x) (e.g.,
125,122]). This latter approach has the effect that the subsump-
ion relationship is a classical {0,1}relationship, while in the former
pproach, subsumption is determined up to a certain degree in [0,
].

We next define what it means that a fuzzy interpretation I sat-
sfies a fuzzy axiom E, or I is a model of E, denoted I � E, as follows.

e define: (1) I � Trans(R) iff RI(x, y) ≥ supz ∈�IRI(x, z) ⊗ RI(z, y)
or all x, y∈�I, (2) I � ˛� n, where � ∈ {≥,≤,>,<}, iff ˛I � n, (3)
� a = b iff aI = bI, and (4) I � a /= b iff aI /= bI. We say that a con-

ept C is satisfiable iff there exists an interpretation I = (�I, ·I) and
n individual x∈�I such that CI(x)> 0. We say that I satisfies a set
f fuzzy axioms E, or I is a model of E, denoted I � E, iff I � E for all

∈ E. We say I satisfies a fuzzy knowledge base K = (R, T,A), or I is
model of K, denoted I � K, iff I is a model of T ∪ R ∪ A. We say K is

atisfiable iff it has a model. A fuzzy axiom E is a logical consequence
f a fuzzy knowledge base K, denoted K � E, iff every model of K
atisfies E.
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the form a : C ≤ x, where x is a [0,1]-valued variable. Then, we
construct a tableaux for K = (R, T,A ∪ {a : C ≤ x}) in which the
04 T. Lukasiewicz, U. Straccia / Web Semantics: Science, Se

xample 6.1 (Car example continued). Example 3.1 illustrates an
vident difficulty in defining the class of sports cars. Indeed, it is
ighly questionable why a car whose maximum speed is 243 km/h

s not a sports car anymore. Essentially, the higher the maximum
peed, the more closely a car is a sports car, which makes the con-
ept of a sports car a fuzzy concept, that is, a vague concept, rather
han a crisp one. In the next section, we see how to represent such
oncepts more appropriately. Let us now reconsider Example 3.1,
here all the axioms of the TBox and ABox are asserted with degree

, that is, are of the form˛ ≥ 1. We replace the definition of SportsCar
y the definition in (6). Then, we have that (under Łukasiewicz
ogic)

K � SportsCar � Car ≥ 1, K � mgb : SportsCar ≤ 0.28,
K � enzo : SportsCar ≥ 1, K � tt : SportsCar ≥ 0.92.

ote that the maximal speed limit of the mgb car (≤170 km/h) induces
he upper limit 0.28 of the membership degree.

xample 6.2. Consider the knowledge base K with the definitions
n (4) and (5). Then, under Łukasiewicz logic, we have that (see
129])

K �Minor � YoungPerson ≥ 0.6,
K � YoungPerson �Minor ≥ 0.4,

hich are relationships not captured with classical SHOIN(D).
An interesting point here is that according to the semantics of

uzzy SHOIN(D), e.g., a minor is a young person to a certain degree
nd is obtained without explicitly mentioning it. This inference
annot be achieved in classical SHOIN(D). Similarly, referring to
xample 3.1, in fuzzy SHOIN(D), the car tt is a sports car to a cer-
ain degree. Therefore, unlike Example 3.1, tt is now closely a sports
ar, as it should be.

.3. Main reasoning problems

In addition to the standard problems of deciding the satis-
ability of fuzzy knowledge bases, deciding the satisfiability of
oncepts relative to fuzzy knowledge bases, and deciding logical
onsequences of fuzzy axioms from fuzzy knowledge bases, two
ther important reasoning problems are the best truth value bound
BTVB) problem and the best satisfiability bound problem, which
e describe in the following.

Given a fuzzy knowledge baseK and a classical axiom˛, where˛
s neither a transitivity axiom nor an equality or inequality axiom,
t is of interest to compute ˛’s best lower and upper truth value
ounds (best truth value bound). The greatest lower bound of ˛ rela-
ive to K, denoted glb(K, ˛), is defined by

lb(K, ˛) = sup{n |K � ˛ ≥ n},

hile the least upper bound of ˛ relative to K, denoted lub(K, ˛), is
efined by

ub(K, ˛) = inf{n |K � ˛ ≤ n},

here sup ∅ = 0 and inf ∅ = 1. For example, the logical conse-
uences in Examples 6.1 and 6.2 contain the best truth value
ounds. Furthermore, note that
ub(K, a : C) = � glb(K, a : ¬C), (7)

hat is, the lub can be determined through the glb (and vice versa).
Similarly, lub(K, (a, b) : R) = � glb(K, a : ¬∃R.{b}). Note also that
� ˛ ≥ n iff glb(K, ˛) ≥ n, and K � ˛ ≤ n iff lub(K, ˛) ≤ n.

a
t
T
t
l

Fig. 2. The soft price constraints.

Finally, the best satisfiability bound of a concept C relative to K,
enoted glb(K, C), is defined by

lb(K, C) = sup
I

sup
x∈�I

{CI(x) | I � K}.

ntuitively, among all models I of K, we determine the maximal
egree of truth that the concept C may have over all individuals
∈�I.

xample 6.3. Consider the knowledge base K in Example 3.1.
ssume that a car seller sells an Audi TT for $31 500, as from the
atalog price. A buyer is looking for a sports car, but wants to pay not
ore than around $30 000. In classical description logics no agree-
ent can be found. The problem relies on the crisp condition on the

eller’s and the buyer’s price. A more fine-grained approach would
e to consider prices as concrete fuzzy sets instead. For example,
he seller may consider optimal to sell above $31 500, but can go
own to $30 500. The buyer prefers to spend less than $30 000, but
an go up to $32 000. We may represent these statements by means
f the following axioms (see Fig. 2):

AudiTT = SportsCar � ∃hasPrice.rs(x; 30 500,31 500),
Query = SportsCar � ∃hasPrice.ls(x; 30 000,32 000).

hen, we may find out that the highest degree to which the con-
ept C = AudiTT � Query is satisfiable is 0.75 (the possibility that
he AudiTT and the query matches is 0.75). That is, glb(K, C) = 0.75
nd corresponds to the point where both requests intersect (that
s, the car may be sold at $31 250).

Problems such as determining the greatest lower bound of
n axiom can be solved by relying on mixed integer linear pro-
ramming (MILP) (see, e.g., [9,128,130,140,139]). Roughly, the basic
dea is as follows. Consider a fuzzy knowledge base K = (R, T,A).
o determine the greatest lower bound of an axiom, we com-
ine appropriate description logic tableaux rules with methods
eveloped in the context of many-valued logics [40]. For exam-
le, to determine, e.g., glb(K, a : C), we consider an expression of
pplication of satisfiability preserving rules generates new asser-
ion axioms together with inequations over [0, 1]-valued variables.
hese inequations have to hold in order to respect the semantics of
he description logic constructors. Finally, to determine the greatest
ower bound, we minimize the original variable x such that all con-
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traints are satisfied.3 Interestingly, under Łukasiewicz and Zadeh
ogic, we end up with a mixed integer linear programming optimiza-
ion problem, while under the Product logic, we end up with a
ixed integer quadratically constrained programming (MIQCP) opti-
ization problem [111]. Similarly, glb(K, C1 � C2) is the minimal

alue of x such that K = (R, T,A ∪ {a : C1 � ¬C2 ≥ 1 − x}) is satisfi-
ble, where a is new individual. Therefore, the greatest lower bound
roblem can be reduced to the minimal satisfiability problem of
fuzzy knowledge base. Furthermore, glb(K, C) is determined by

he maximal value of x such that (R, T,A ∪ {a : C ≥ x}) is satisfiable,
here a is a new individual. In summary,

glb(K, a : C) = min x such that(R, T,A ∪ {a : C ≤ x}) satisfiable,
glb(K, C1 � C2) = min x such that(R, T,A ∪ {a : C1 � ¬C2 ≥ 1 − x})

satisfiable,
glb(K, C) = max x such that(R, T,A ∪ {a : C ≥ x}) satisfiable.

.4. Main applications

Fuzzy logic has numerous practical applications in general (see,
.g., [67]). Related to fuzzy description logics, we point out that
hey have first been proposed for logic-based information retrieval
96], which originated from the idea to annotate textual documents
ith graded description logic sentences, which goes back to [97].

he idea has been reconsidered in [120,141,156]. In particular, (i)
hang et al. [156] describe a semantic portal that is based on fuzzy
escription logics; (ii) Li et al. [76] present an improved seman-
ic search model by integrating inference and information retrieval
nd an implementation in the security domain; (iii) Straccia and
isco [141] report on a multimedia information retrieval system
ased on a fuzzy DLR-Lite description logic, which is capable to deal
ith hundreds of thousands of images. D’Aquin et al. [17] provide
use case in the medical domain, where fuzzy concrete domains

re used to identify tumor regions in X-ray images. Agarwal and
amparter [1] use fuzzy description logics to improve searching
nd comparing products in electronic markets. They provide a more
xpressive search mechanism that is closer to human reasoning and
hat aggregates multiple search criteria to a single value (ranking
f an offer relative to the query), thus enabling a better selection
f offers to be considered for the negotiation. Liu et al. [81] use a
uzzy description logic to model the management part in project
election tasks.

.5. Other vague ontology languages

There are several extensions of description logics respectively
ntology languages using the theory of fuzzy logic in the literature.
hey can be classified according to (a) the description logic respec-
ively ontology language that they generalize, (b) the allowed fuzzy
onstructs, (c) the underlying fuzzy logics, and (d) their reasoning
lgorithms.

The first work is due to Yen [154], who proposes a fuzzy exten-
ion of a very restricted sublanguage of ALC, called FL− [12,73].
he work includes fuzzy terminological knowledge, but no fuzzy
ssertional knowledge, and it is based on Zadeh logic. It already

nformally talks about the use of fuzzy modifiers and fuzzy concrete
omains. Though, the unique reasoning facility, the subsumption
est, is a crisp yes/no questioning. Tresp and Molitor [144] consider
more general extension of fuzzy ALC. Like Yen, they also allow for

3 Informally, suppose the minimal value is n̄ (if no such value exists, then K is
ot satisfiable). We know then that for any interpretation I satisfying K such that
a : C)I < n̄, the starting set is unsatisfiable, and thus (a : C)I ≥ n̄ holds. This means
hat glb(K, a : C) = n̄.
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uzzy terminological knowledge along with a special form of fuzzy
odifiers (which are a combination of two linear functions), but

o fuzzy assertional knowledge, and they assume Zadeh logic as
nderlying fuzzy logic. The work also presents a sound and com-
lete reasoning algorithm testing the subsumption relationship
sing a linear programming oracle.

Another fuzzy extension of ALC is due to Straccia [123,125],
ho allows for both fuzzy terminological and fuzzy assertional

nowledge, but not for fuzzy modifiers and fuzzy concrete domains,
nd again assumes Zadeh logic as underlying fuzzy logic. Strac-
ia [123,125] also introduces the best truth value bound problem
nd provides a sound and complete reasoning algorithm based on
ompletion rules. In [124], Straccia reports a four-valued variant
f fuzzy ALC. In the same spirit, Hölldobler et al. [50,51] extend
traccia’s fuzzy ALC with concept modifiers of the form fm(x) = xˇ,
here ˇ > 0, and present a sound and complete reasoning algo-

ithm (based on completion rules) for the graded subsumption
roblem.

Straccia’s works [127,133,138] are essentially as [125], except
hat now the set of possible truth values is a complete lattice rather
han [0, 1].

Sanchez and Tettamanzi [112–114] consider a fuzzy extension
f the description logic ALCQ (without assertional component)
nder Zadeh logic, and they start addressing the issue of a fuzzy
emantics of quantifiers. Essentially, fuzzy quantifiers allow to
tate concepts such as FaithfulCustomer � (Most)buys.LowCalorie-
ood encoding “the set of all individuals that mostly by low calorie
ood”. An algorithm is presented, which calculates the satisfiability
nterval for a fuzzy concept.

Hájek [43,44] considers a fuzzy extension of the description
ogic ALC under arbitrary t-norms. He provides in particular algo-
ithms for deciding whether C � D ≥ 1 is a tautology and whether
� D ≥ 1 is satisfiable, which are based on a reduction to the

ropositional BL logic for which a Hilbert-style axiomatization
xists [42](but see also [44] for the complexity of rational Pavelka
ogic, and see [10] for some complexity results on reasoning in fuzzy
escription logics).

Straccia [126] provides a translation of fuzzy ALC (with gen-
ral concept inclusion axioms) into classical ALC. The translation
s modular, and thus expected to be extendable to more expressive
uzzy description logics as well. The main idea is to translate a fuzzy
ssertion of the form a : C ≥ n into a crisp assertion a : Cn, with the
ntended meaning “a is an instance of C to degree at least n”. Then,
oncept inclusion axioms are used to correctly relate the Cn’s. For
xample, C0.7 � C0.6 is used to encode that whenever an individual
s an instance of C to degree at least 0.7, then it is also an instance
f C to degree at least 0.6. The translation is at most quadratic in
he size of the fuzzy knowledge base. Note that the translation does
ot yet work in the presence of fuzzy modifiers and fuzzy concrete
omains. Bobillo et al. [8] extend the approach to a variant of fuzzy
HOIN. The idea has further been considered in the works [78,79],
hich essentially provide a crisp language in which expressions of,

.g., the form a : ∀R0.8.C0.9 are allowed, with the intended meaning
if a has an R-successor to degree at least 0.8, then this successor
s also an instance of C to degree at least 0.9”. The idea has further
een extended to a distributed variant of fuzzy description logics

n [82].
In [94], a fuzzy extension (based on Zadeh logic) of CARIN [74]

s provided, which combines fuzzy description logics with non-
ecursive Horn rules.
Other extensions of fuzzy description logics concern their inte-
ration with fuzzy logic programs, which however goes beyond
he scope of the present paper (see, e.g., [138,135,133,89,91,149]).
n interesting extension is due to Kang et al. [64], who extends

uzzy description logics by comparison operators, e.g., to state that
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Tom is taller than Tim”. Another interesting extension is proposed
y Dubois et al. [22], who combine fuzzy description logics with
ossibility theory. Essentially, since a : C ≥ n is Boolean (either an

nterpretation satisfies it or not), we can build on top of it an uncer-
ainty logic, which is based on possibility theory in [22].

We recall that usually the semantics used for fuzzy description
ogics is based on Zadeh logic, but where the concept inclusion is
risp, that is, C � D is viewed as ∀x.C(x) ≤ D(x). In [52,144], a cal-
ulus for fuzzy ALC [115] with fuzzy modifiers and simple TBoxes
nder Zadeh logic is reported. No indication for the BTVB prob-

em is given. Straccia [123,125] reports a calculus for fuzzy ALC and
imple TBoxes under Zadeh logic and addresses the BTVB prob-
em. How the satisfiability problem and the BTVB problem can be
educed to classical ALC, and thus can be solved by means of tools
ike FaCT and RACER is shown in [126]. Results providing a tableaux
alculus for fuzzy SHIN under Zadeh logic (but only allowing for
restricted form of concept inclusion axioms, which are called

uzzy inclusion introductions and fuzzy equivalence introductions),
y adapting similar techniques as for the classical counterpart, are
hown in [120,121]. Fuzzy general concept inclusion axioms under
adeh logic can be managed as described in [122]. Also interesting is
he work [77], which provides a tableau for fuzzy SHI with general
oncept inclusion axioms. Finally, the reasoning techniques for clas-
ical SHOIN(D) [57] can be extended to [125], as [120,121,118,117]
lready show.

On the other hand, fuzzy tableaux algorithms under Zadeh
emantics do not seem to be suitable to be adapted to other seman-
ics, such as Łukasiewicz logic. Even more problematic is the fact
hat they are yet unable to deal with fuzzy concrete domains.
espite these negative results, recently, Straccia [130,128] report a
alculus for fuzzyALC(D) whenever the connectives, the modifiers,
nd the fuzzy datatype predicates are representable as bounded
ixed integer linear programs (MILPs). For example, Łukasiewicz

ogic satisfies these conditions as well as the membership functions
or fuzzy datatype predicates that we have presented in this paper.
dditionally, modifiers should be a combination of linear functions.

n that case, the calculus consists of a set of constraint propaga-
ion rules and an invocation to an oracle for MILP. The method has
een extended to fuzzy SHIF(D) [139](the description logic behind
WL Lite). The use of MILP for reasoning in fuzzy description logics

s not surprising as their use for automated deduction in many-
alued logics is well known [39,40]. Bobillo and Straccia [9] provide
calculus for fuzzy ALC(D) under product semantics.

A very recent problem for fuzzy description logics is the top-k
etrieval problem. While in classical semantics, a tuple satisfies or
oes not satisfy a query, in fuzzy description logics, a tuple may
atisfy a query to a degree. Hence, for example, given a conjunctive
uery over a fuzzy description logic knowledge base, it is of interest
o compute only the top-k answers. While in relational databases,
his problem is a current research area (see, e.g., [31,60,75]), very
ew is known for the case of first-order knowledge bases in gen-
ral (but see [136]) and description logics in particular. The only
orks that we are aware of are [132,137,141], which deal with

he problem of finding the top-k result over knowledge bases in a
uzzy generalization of DL-Lite [13](note that [103] is subsumed by
137]).

. Conclusion
Handling uncertainty and vagueness has started to play an
mportant role in ontology languages for the Semantic Web. In this
aper, we have first provided a brief introduction to uncertainty
nd vagueness at the propositional level, and we have summarized
he basics of classical description logics for the Semantic Web. We
and Agents on the World Wide Web 6 (2008) 291–308

ave then described the most prominent approaches to handling
robabilistic uncertainty, possibilistic uncertainty, and vagueness

n expressive description logics for the Semantic Web, and we have
iven an overview of related approaches.

There are many important aspects that are open for future
esearch. In particular, an important issue is to develop more scal-
ble formalisms for handling probabilistic uncertainty, possibilistic
ncertainty, and vagueness in ontology languages for the Semantic
eb, especially those scalable formalisms that are also practically

elevant. Another important issue is to provide more implementa-
ions, especially of scalable formalisms. It would also be interesting
o integrate the above forms of uncertainty and vagueness in a sin-
le description logic for the Semantic Web. Another interesting
ssue for future research is the integration of probabilistic, possi-
ilistic, and fuzzy description logics with rule-based languages for
he Semantic Web.
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[39] R. Hähnle, Many-valued logics and mixed integer programming, Ann. Math.
Artif. Intell. 12 (3–4) (1994) 231–263.
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[43] P. Hájek, Making fuzzy description logics more expressive, Fuzzy Sets Syst.

154 (1) (2005) 1–15.
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