
Fuzzy Logic, Annotation Domains and
Semantic Web Languages

Umberto Straccia

ISTI-CNR, Pisa, Italy
http://www.straccia.info

straccia@isti.cnr.it

http://www.straccia.info

Basics on Semantic Web Languages
RDFS, OWL, RIF

The Quest for Fuzzy SWLs

Fuzzy Logic Basics

Fuzzy RDFS Basics
Crisp RDFS
Fuzzy RDFS

Fuzzy OWL Basics
Crisp OWL
Fuzzy OWL

Fuzzy RIF Basics
Crisp RIF
Fuzzy RIF

Open issues

Semantic Web Languages Basics

Semantic Web Initiative:
From a Knowledge Representation and Reasoning
point of view

I Standards to represent Knowledge/Information at various
level of granularity

I Semantics of these languages is well defined, based on
some logical language

I Several tools have been developed in terms of Editors,
Reasoners, . . .

I The computational complexity analysis and the
development of optimised/customised algorithms is very
important

The Semantic Web Family of Languages
I Wide variety of languages

I RDFS: Triple language, -Resource Description Framework
I logic having intensional semantics and the logical

counterpart is ρdf
I OWL 2: Conceptual language, -Ontology Web Language

I family of languages that relate to Description Logics (DLs)
I RIF: Rule language, -Rule Interchange Format,

I family of languages that relate to the Logic Programming
(LP) paradigm

I OWL 2 and RIF have an extensional semantics

RDFS

I RDFS: the triple language

〈subject ,predicate,object〉

e.g. 〈umberto,born, zurich〉
I Computationally: compute closure, cl(KB),

I Infer all possible triples using inference rules, e.g.

(A, sc,B), (X , type,A)

(X , type,B)

“if A subclass of B, X instance of A then X is instance of B”
I Complexity: O(|KB|2)

I Store all inferred triples into a relational database and
query via SQL

I OWL family: the object oriented language

class PERSON partial

restriction (hasName someValuesFrom String)

restriction (hasBirthPlace someValuesFrom GEOPLACE)

. . .

I Computationally: tableaux like algorithms

OWL 2 Profiles

OWL 2 EL I useful for large size of properties and/or classes
I basic reasoning problems solved inpolynomial time
I The EL acronym refers to the EL family of DLs

OWL 2 QL I useful for very large volumes of instance data
I conjunctive query answering via via query rewriting and

SQL
I OWL 2 QL relates to the DL family DL-Lite

OWL 2 RL I useful for scalable reasoning without sacrificing too
much expressive power

I OWL 2 RL maps to Datalog
I Computational complexity: same as for Datalog,

polynomial in size of the data, EXPTIME w.r.t. size of
knowledge base

RIF

I RIF family: the rule language
Forall ?Buyer ?Item ?Seller

buy(?Buyer ?Item ?Seller) :- sell(?Seller ?Item ?Buyer)

RIF Dialects

RIF-BLD: Basic Logic Dialect
I Horn logic with various syntactic and semantic

extensions.
I Frame syntax, with datatypes and externally defined

predicates

RIF-PRD: Production Rule Dialect
I aims at capturing the main aspects of various

production rule systems
I defined using ad hoc computational mechanism, and

not based on a logic
I RIF-PRD is not part of the suite of logical RIF dialects

and stands apart from them

RIF-Core: Core Dialect
I subset of both RIF-BLD and RIF-PRD
I RIF-Core corresponds to Horn logic without function

symbols (i.e., Datalog)
I number of extensions to support features such as

objects and frames as in F-logic

The Quest for Fuzzy Semantic Web Languages

Fuzzyness

I Fuzzy statements involve context sensitive concepts with
no exact definition (binary decision/membership function)

tall, small, close, far, cheap, expensive, is about,
similar to, warm, cold, . . .

I Fuzzy concepts may occur in information need formulation
“Find me the a good hotel close to the conference
venue”

I Fuzzy concepts may occur also in informative statements
“If a hotel is close to the leaning tower of Pisa
then it is a touristic hotel”

I Fuzzy statements are true to some degree, which is taken
from a truth space (usually [0,1])

Other examples
I (Multimedia) Information Retrieval:

I To which degree is a Web site, a Web page, a text passage,
an image region, a video segment, . . . relevant to my
information need?

IsAbout
ImageRegion Object ID degree
o1 snoopy 0.8
o2 woodstock 0.7
.
.
.

.

.

.

“Find top-k image regions about animals”
Query(x)← ImageRegion(x) ∧ isAbout(x , y) ∧ Animal(y)

I Matchmaking
I To which degree does an object match my requirements?

I if I’m looking for a car and my budget is about 30.000e, to
which degree does a car’s price match my budget?

I Semantic annotation / classification
I To which degree does e.g., an image object represent or is

about a dog?

“White Dog Cafe”

I Ontology alignment (schema mapping)
I To which degree do two concepts of two ontologies

represent the same, or are disjoint, or are overlapping?

Example (Distributed Information Retrieval)

Then the agent has to perform automatically the following steps:

1. The agent has to select a subset of relevant resources S ′ ⊆ S , as it is
not reasonable to assume to access to and query all resources
(resource selection/resource discovery);

2. For every selected source Si ∈ S ′ the agent has to reformulate its
information need QA into the query language Li provided by the
resource (schema mapping/ontology alignment);

3. The results from the selected resources have to be merged together
(data fusion/rank aggregation)

Example (Health-care: diagnosis of pneumonia)

I Lifezone mapping
I To which degree do certain areas have a specific bioclima

Holdridge life zones of USA

I Allowing to deal with fuzzy concepts in SWLs seems a nice
feature

I To be able to to do it rigorously and computationally in an
attractive way is not so easy

Fuzzy Logic Basics

Fuzzyness & Logic

I A fuzzy statement is true to some degree, which is taken
from a truth space

I Truth space: set of truth values L and an partial order ≤
I Many-valued Interpretation: a function I mapping formulae

into L, i.e. I(ϕ) ∈ L
I Mathematical Fuzzy Logic: L = [0,1], but also

Ln = {0, 1
n , . . . ,

n−1
n ,1} for an integer n≥1

I Problem: what is the interpretation of e.g.

ϕ ∧ ψ ?

I E.g., if I(ϕ) = 0.83 and I(ψ) = 0.2, what is the result of 0.83 ∧ 0.2?

I More generally, what is the result of n∧m, for n,m ∈ [0,1]?
I The choice cannot be any arbitrary computable function,

but has to reflect some basic properties that one expects to
hold for a “conjunction”

I Norms: functions that are used to interpret connectives
such as ∧,∨,¬,→

I t-norm: interprets conjunction
I s-norm: interprets disjunction

I Norms are compatible with classical two-valued logic

Axioms for t-norms and s-norms

Axiom Name T-norm S-norm
Tautology / Contradiction a ∧ 0 = 0 a ∨ 1 = 1
Identity a ∧ 1 = a a ∨ 0 = a
Commutativity a ∧ b = b ∧ a a ∨ b = b ∨ a
Associativity (a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∨ b) ∨ c = a ∨ (b ∨ c)
Monotonicity if b ≤ c, then a ∧ b ≤ a ∧ c if b ≤ c, then a ∨ b ≤ a ∨ c

Axioms for implication and negation functions

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0→ b = 1 ¬ 0 = 1, ¬ 1 = 0

a→ 1 = 1
Antitonicity if a ≤ b, then a→ c ≥ b → c if a ≤ b, then ¬ a ≥ ¬ b
Monotonicity if b ≤ c, then a→ b ≤ a→ c

Usually,
a→ b = sup{c : a ∧ c ≤ b}

is used and is called r-implication and depends on the t-norm
only

Typical norms

Lukasiewicz Logic Gödel Logic Product Logic Zadeh

¬x 1− x if x = 0 then 1
else 0

if x = 0 then 1
else 0 1− x

x ∧ y max(x + y − 1, 0) min(x, y) x · y min(x, y)
x ∨ y min(x + y, 1) max(x, y) x + y − x · y max(x, y)

x ⇒ y if x ≤ y then 1
else 1− x + y

if x ≤ y then 1
else y

if x ≤ y then 1
else y/x max(1− x, y)

Note: for Lukasiewicz Logic and Zadeh, x ⇒ y ≡ ¬x ∨ y

I Any other t-norm can be obtained as a combination of
Lukasiewicz, Gödel and Product t-norm

I Zadeh: not interesting for mathematical fuzzy logicians: its
a sub-logic of Łukasiewicz and, thus, rarely considered by
fuzzy logicians

¬Z x = ¬Łx
x ∧Z y = x ∧Ł (x →Ł y)

x →Z y = ¬Łx ∨Ł y

Some additional properties of t-norms, s-norms, implication
functions, and negation functions of various fuzzy logics.

Property Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic

x ∧ ¬ x = 0 • • •
x ∨ ¬ x = 1 •
x ∧ x = x • •
x ∨ x = x • •
¬¬ x = x • •

x ⇒ y = ¬ x ∨ y • •
¬ (x ⇒ y) = x ∧ ¬ y • •
¬ (x ∧ y) = ¬ x ∨ ¬ y • • • •
¬ (x ∨ y) = ¬ x ∧ ¬ y • • • •

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) • •
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) • •

I Note: If all conditions in the upper part of a column have to
be satisfied then we collapse to classical two-valued logic,
i.e. L = {0,1}

Propositional Fuzzy Logic

I Formulae: propositional formulae

I Truth space is [0,1]

I Formulae have a a degree of truth in [0,1]

I Interpretation: is a mapping I : Atoms → [0,1]

I Interpretations are extended to formulae using norms to interpret
connectives ∧,∨,¬,→

I(ϕ ∧ ψ) = I(ϕ) ∧ I(ψ)
I(ϕ ∨ ψ) = I(ϕ) ∨ I(ψ)
I(ϕ→ ψ) = I(ϕ)→ I(ψ)
I(¬ϕ) = ¬I(ϕ)

I Rational r ∈ [0,1] may appear as atom in formula, where
I(r) = r

I Note:

I(r → ϕ) = 1 iff I(ϕ) ≥ r
I(ϕ→ r) = 1 iff I(ϕ) ≤ r

I We use ϕ ≥ r as an abbreviation of r → ϕ and ϕ ≤ r as an
abbreviation of ϕ→ r

I Semantics:

I |= ϕ iff I(ϕ) = 1
I |= KB iff I |= ϕ for all ϕ ∈ KB
KB |= ϕ iff for all I. if I |= KB then I |= ϕ

I Deduction rule is valid: for r , s ∈ [0,1]:

r → ϕ, s → (ϕ→ ψ) |= (r ∧ s)→ ψ

Informally,

From ϕ ≥ r and (ϕ→ ψ) ≥ s infer ψ ≥ r ∧ s

I Let
bsd(KB, φ) = sup{I(φ) | I |= KB} (Best Satisfiability Degree (BSD))

bed(KB, φ) = sup{r | KB |= ϕ ≥ r} (Best Entailment Degree (BED))

I Then
bed(KB, φ) = min x. such that KB ∪ {φ ≤ x} satisfiable.

I Assume KB is a set of formulae φ ≥ n or φ ≤ n
I For a formula φ consider a variable xφ (that the degree of truth of φ is greater or equal to xφ)
I E.g., for Łukasiewicz logic, use Mixed Integer Linear Programming

bed(KB, φ) = min x. such that x ∈ [0, 1], xφ ≤ x, σ(φ),

for all φ′ ≥ n ∈ KB, xφ′ ≥ n, σ(φ′),
for all φ′ ≤ n ∈ KB, xφ′ ≤ n, σ(φ′)

σ(φ) =



xp ∈ [0, 1] if φ = p

xr = r if φ = r, r ∈ [0, 1]

xφ′ = 	xφ, xφ ∈ [0, 1] if φ = ¬φ′

xφ1
⊗ xφ2

= xφ,
σ(φ1), σ(φ2), xφ ∈ [0, 1]

if φ = φ1 ∧ φ2

xφ1
⊕ xφ2

= xφ if φ = φ1 ∨ φ2

σ(¬φ1 ∨ φ2) if φ = φ1 → φ2 .

where

x1 = 	x2 7→ x1 = 1− x2

x1 ⊕ x2 = z 7→ {y ≤ z, x1 + x2 ≥ y, z ≤ x1 + x2 ≤ z + y, y ∈ {0, 1}}
x1 ⊗ x2 = z 7→ {z ≤ y, x1 + x2 − 1 ≥ y, z − y ≤ x1 + x2 − 1 ≤ z, y ∈ {0, 1}}

I In a similar way, we may determine bsd(KB, φ) as

min−x . such that x ∈ [0, 1], xφ ≥ x , σ(φ),
for all φ′ ≥ n ∈ KB, xφ′ ≥ n, σ(φ′),
for all φ′ ≤ n ∈ KB, xφ′ ≤ n, σ(φ′)

Example

I Consider KB = {p ≥ 0.6, p → q ≥ 0.7}
I Let us show that bed(q, KB) = 0.3

I Recall that bed(q, KB) is
min x. such that x ∈ [0, 1], xq ≤ x, σ(q),

for all φ′ ≥ n ∈ KB, xφ′ ≥ n, σ(φ′),
for all φ′ ≤ n ∈ KB, xφ′ ≤ n, σ(φ′)

p ≥ 0.6 7→ xp ≥ 0.6, xp ∈ [0, 1]

p → q ≥ 0.7 7→ xp→q ≥ 0.7, xp→q ∈ [0, 1], σ(p → q)

σ(q) 7→ xq ∈ [0, 1]

σ(p → q) 7→ x¬p∨q = xp→q , σ(¬p ∨ q)

σ(¬p ∨ q) 7→ x¬p + xq = x¬p∨q , σ(¬p), σ(q), x¬p∨q ∈ [0, 1]

σ(¬p) 7→ xp = 1− x¬p, xp ∈ [0, 1]

It follows that 0.3 = min x. . . .

Fuzzy Concrete Domains

I Allows us to define concepts such as young, cheap, cold, etc.
I We allow also crisp constraints such as AlarmSystem ∧ (price > 26,000),

AlarmSystem→ (deliverytime ≥ 30)

I Fuzzy membership functions: usually of the form

dcba
0

1

x cba
0

1

x ba
0

1

x ba
0

1

x

(a) (b) (c) (d)

Figure: (a) Trapezoidal function trz(a, b, c, d), (b) triangular function tri(a, b, c), (c) left shoulder
function ls(a, b), and (d) right shoulder function rs(a, b).

I For instance, AlarmSystem ∧ (price ls(18000, 22000))

I Usually, domain is partitioned uniformly into 5 or 7 parts (there are methods to learn them)

Fuzzy Concrete Domains (cont.)

Definition (The language P(N))
LetA be a set of propositional atoms, and F a set of pairs 〈f ,Df 〉 each made of a feature name and an associated
concrete domain Df , and let k be a value in Df . Then the following formulae are in P(N):

1. every atom A ∈ A is a formula

2. if 〈f ,Df 〉 ∈ F , k ∈ Df , and c ∈ {≥,≤,=} then (f c k) is a formula

3. if 〈f ,Df 〉 ∈ F and c is of the form ls(a, b), rs(a, b), tri(a, b, c), trz(a, b, c, d) then (f c) is a formula

4. if ψ and ϕ are formulae and n ∈ [0, 1] then so are ¬ψ, ψ ∧ ϕ, ψ ∨ ϕ, ψ → ϕ. We use ψ ↔ ϕ in place
of (ψ → ϕ) ∧ (ϕ→ ψ),

5. if ψ1, . . . , ψn are formulae, then w1 · ψ1 + . . . + wn · ψn is a formula, where wi ∈ [0, 1] and
∑

i wi ≤ 1

6. if ψ is a formula and n ∈ [0, 1] then ψ : n is a formula in P(N). If n is omitted, then ψ : 1 is assumed

Definition (Interpretation and models)
An interpretation I for P(N) is a function (denoted as a superscript ·I on its argument) that maps each atom inA
into a truth value AI ∈ [0, 1], each feature name f into a value fI ∈ Df , and assigns truth values in [0, 1] to
formulas as follows:

I for hard constraints, (f c k)I = 1 iff the relation fI c k is true in Df , (f c k)I = 0 otherwise

I for soft constraints, (f c)I = c(fI) , i.e., the result of evaluating the fuzzy membership function c on the
value fI

I (¬ψ)I = ¬ψI , (ψ ∧ ϕ)I = ψI ∧ ϕI , (ψ ∨ ϕ)I = ψI ∨ ϕI , (ψ → ϕ)I = ψI ⇒ ϕI and
(w1 · ψ1 + . . . + wn · ψn)I =

∑
i wi · ψIi

I I |= ψ : n iff ψI ≥ n.

Example: Matchmaking

I Suppose we have a buyer and a seller (agents)

I A car seller sells a sedan car
I A buyer is looking for a second hand passenger car
I Both the buyer as well as the seller have preferences

(restrictions)
I There is some background knowledge

I The objective is determine “an optimal” (Pareto optimal)
agreement among the two

Matchmaking Example: the Background Knowledge

1. A sedan is a passenger car

2. A satellite alarm system is an alarm system

3. The navigator pack is a satellite alarm system with a GPS
system

4. The Insurance Plus package is a driver insurance together with
a theft insurance

5. The car colours are black or grey

Matchmaking Example: Buyer’s preferences

1. He does not want to pay more than 26000 euro (buyer
reservation value)

2. He wants an alarm system in the car and he is completely
satisfied with paying no more than 23000 euro, but he can go up
to 26000 euro to a lesser degree of satisfaction

3. He wants a driver insurance and either a theft insurance or a fire
insurance

4. He wants air conditioning and the external colour should be
either black or grey

5. Preferably the price is no more than 22000 euro, but he can go
up to 24000 euro to a lesser degree of satisfaction

6. The kilometer warranty is preferrably at least 140000, but he
may go down to 160000 to a lesser degree of satisfaction

7. The weights of the preferences 2-6 are, (0.1, 0.2, 0.1, 0.2, 0.4).
The higher the value the more important is the preference

Matchmaking Example: Seller’s preferences

1. He wants to sell no less than 24000 euro (seller reservation
value)

2. If there is an navigator pack system in the car then he is
completely satisfied with selling no less than 26000 euro, but he
can go down to 24000 euro to a lesser degree of satisfaction

3. Preferably the seller sells the Insurance Plus package

4. The kilometer warranty is preferrably at most 150000, but he
may go up to 170000 to a lesser degree of satisfaction

5. If the color is black then the car has air conditioning

6. The weights of the preferences 2-5 are, (0.3, 0.1, 0.4, 0.2). The
higher the value the more important is the preference

Matchmaking Example: Encoding

T =



Sedan→ PassengerCar
ExternalColorBlack→ ¬ExternalColorGray
SatelliteAlarm→ AlarmSystem
InsurancePlus↔ DriverInsurance ∧ TheftInsurance
NavigatorPack↔ SatelliteAlarm ∧ GPS_system

Buyer’s request:
β = PassengerCar ∧ price ≤ 26000
β1 = AlarmSystem⇒ (price , ls(23000, 26000))
β2 = DriverInsurance ∧ (TheftInsurance ∨ FireInsurance)
β3 = AirConditioning ∧ (ExternalColorBlack ∨ ExternalColorGray)
β4 = (price , ls(22000, 24000))
β5 = (km_warranty , rs(140000, 160000))
B = 0.1 · β1 + 0.2 · β2 + 0.1 · β3 + 0.2 · β4 + 0.2 · β5

Seller’s request:
σ = Sedan ∧ price ≥ 24000
σ1 = NavigatorPack ∧ (price , rs(24000, 26000))
σ2 = InsurancePlus
σ3 = (km_warranty , ls(150000, 170000))
σ4 = ExternalColorBlack ∧ AirConditioning
S = 0.3 · σ1 + 0.1 · σ2 + 0.4 · σ3 + 0.2 · σ4

Let
KB = T ∪ {β, σ} ∪ {buy↔ B, sell↔ S}

Pareto optimal solution:
bsd(KB, buy ∧Π sell) = 0.651

In particular, the final agreement is:

SedanĪ = 1.0, PassengerCarĪ = 1.0, InsurancePlusĪ = 1.0, AlarmSystemĪ = 1.0,
DriverInsuranceĪ = 1.0, AirConditioningĪ = 1.0, NavigatorPackĪ = 1.0,
(km_warranty ls(150000, 170000))Ī = 0.5, i.e. km_warrantyĪ = 160000,
(price, ls(23000, 26000))Ī = 0.33, i.e. priceĪ = 24000,
TheftInsuranceĪ = 1.0, FireInsuranceĪ = 1.0, ExternalColorBlackĪ = 1.0, ExternalColorGrayĪ = 0.0.

Example: (Fuzzy) Multi-Criteria Decision Making

I We have to decide which offer to choose for the
development of a Public School

I There are 3 offers (Alternatives), which have been
evaluated by an expert according to 3 Criteria

I Cost, DeliveryTime, Quality

Preliminaries: MCDM Basics

I Alternatives Ai : different choices of action available to the decision
maker to be ranked

I Decision criteria Cj : different dimensions from which the alternatives
can be viewed and evaluated

I Decision weights wj : importance of a criteria
I Performance weights aij : performance of alternative w.r.t. a decision

criteria
Criteria

w1 w2 · · wm
Alternatives C1 C2 · · Cm

x1 A1 a11 a12 · · a1m
x2 A2 a21 a22 · · a2m
· · · · · · ·
· · · · · · ·

xn An an1 an2 · · anm

(1)

I Final ranking value xi :

xi =
m∑

j=1

aijwj

I Optimal alternative A∗:
A∗ = arg max

Ai
xi

Preliminaries: Fuzzy MCDM Basics
I Principal difference: weights wi and performance aij are fuzzy numbers
I Fuzzy number ñ: fuzzy set over relas with triangular membership function

tri(a, b, c). Intended being an approximation of the number b

cba
0

1

x
I Any real value n is seen as the fuzzy number tri(n, n, n)

I Arithmetic operators +,−, · and ÷ are extended to fuzzy numbers
I For ∗ ∈ {+, ·}, ñ1 ∗ ñ2 = tri(a1 ∗ a2,b1 ∗ b2, c1 ∗ c2)
I For ∗ ∈ {−,÷}, ñ1 ∗ ñ2 = tri(a1 ∗ c2,b1 ∗ b2, c1 ∗ a2)

I Final ranking value xi : fuzzy number

x̃i =
m∑

j=1

ãij · w̃j

I Optimal alternative A∗:
A∗ = arg max

Ai
xi

using some fuzzy number ranking method. E.g., Best Non-Fuzzy Performance
(BNP): (a + b + c)/3

Example: (Fuzzy) Multi-Criteria Decision Making
I We have to decide which offer to choose for the development of a Public School
I There are 3 offers (Alternatives), which have been evaluated by an expert according to 3 Criteria
I The importance of alternative Ai against criteria Cj is aij ∈ {VeryPoor, Poor, Fair,Good, VeryGood}
I The importance of the criteria is weighted wij ∈ [0, 1],

∑
i wij = 1 (w1 = 0.3,w2 = 0.2,w3 = 0.5)

Offer Cost DeliveryTime Quality
0.3 0.2 0.5

A1 VeryPoor Fair Good
A2 Good VeryGood Poor
A3 Fair Fair Poor

KB = {A1, A2, A3} where

Ai ↔ w1 · (hasScore ai1) + w2 · (hasScore ai2) + w3 · (hasScore ai3)

I The Final Rank Value, rn(KB, Ai), of alternative Ai is defined as the Middle of Maxima (MOM)
de-fuzzification method

rn(KB, A1) = 0.75, rn(KB, A2) = 0.25, rn(KB, A3) = 0.375

I So, we may choose offer A1

Note: Computing Middle of Maxima (MOM)

I Middle of Maxima (MOM) = (Largest of Maxima (LOM) + Smallest of Maxima (SOM))/2

I LOM is implemented in the following steps
1. Compute n = bsd(Ai , KB)

2. Maximise the value of the (internal) variable representing the value of hasScore, i.e. the variable

xhasScore, given KB ∪ {Ai ≥ n}

I SOM is implemented in the following steps
1. Compute n = bsd(Ai , KB)

2. Minimise the variable xhasScore, given KB ∪ {Ai ≥ n}

I MOM is implemented in the following steps
1. Compute n = bsd(Ai , KB)
2. Maximise the variable xhasScore, given KB ∪ {Ai ≥ n}
3. Minimise the variable xhasScore, given KB ∪ {Ai ≥ n}

4. Take the average of the two values obtained from the two maximisation and minimisation problems

Predicate Fuzzy Logics Basics

I Formulae: First-Order Logic formulae, terms are either variables or constants

I we may introduce functions symbols as well, with crisp semantics (but uninteresting), or we need to

discuss also fuzzy equality (which we leave out here)
I Truth space is [0, 1]

I Formulae have a a degree of truth in [0, 1]

I Interpretation: is a mapping I : Atoms → [0, 1]

I Interpretations are extended to formulae as follows:

I(¬φ) = I(φ)→ 0

I(φ ∧ ψ) = I(φ) ∧ I(ψ)

I(φ→ ψ) = I(φ)→ I(ψ)

I(∃xφ) = sup
c∈∆I

Ic
x (φ)

I(∀xφ) = inf
c∈∆I

Ic
x (φ)

where Ic
x is as I, except that variable x is mapped into individual c

I Definitions of I |= φ : n, I |= T , T |= φ : n, bed(KB, φ) and bsd(KB, φ) are as for the propositional case

I ¬∀xϕ(x) ≡ ∃x¬ϕ(x) true in Ł, but does not hold for logic G and Π

I (¬∀x p(x)) ∧ (¬∃x ¬p(x)) has no classical model. In Gödel logic it has no finite model, but has an infinite
model: for integer n ≥ 1, let I such that I(p(n)) = 1/n

I(∀x p(x)) = inf
n

1/n = 0

I(∃x ¬p(x)) = sup
n
¬1/n = sup 0 = 0

I Note: If I |= ∃x φ(x) then not necessarily there is c ∈ ∆I such that I |= φ(c).

∆I = {n | integer n ≥ 1}
I(p(n)) = 1− 1/n < 1, for all n

I(∃x p(x)) = sup
n

1− 1/n = 1

I Witnessed formula: ∃x φ(x) is witnessed in I iff there is c ∈ ∆I such that I(∃x φ(x)) = I(φ(c))
(similarly for ∀x φ(x))

I Witnessed interpretation: I witnessed if all quantified formulae are witnessed in I

Proposition
In Ł, φ is satisfiable iff there is a witnessed model of φ.

The proposition does not hold for logic G and Π

Fuzzy Concrete Domains

I Allows us to deal with concepts such as young, cheap, cold, etc.
I Fuzzy membership functions: usually of the form

dcba
0

1

x cba
0

1

x ba
0

1

x ba
0

1

x

(a) (b) (c) (d)

Figure: (a) Trapezoidal function trz(a, b, c, d), (b) triangular function tri(a, b, c), (c) left shoulder
function ls(a, b), and (d) right shoulder function rs(a, b).

I Works similarly as for propositional case:
I We consider a concrete domain over rational numbers with concrete predicates:

≥ (x, y),≤ (x, y),= (x, y), ls(a, b)(x), rs(a, b)(x), tri(a, b, c)(x), trz(a, b, c, d)(x)

I Formulae may contain concrete predicates as atom
I There are variables and constants for rational numbers
I Formula example

∃r.AlarmSystem(avs) ∧ price(avs, r) ∧ ls(350, 500)(r) : n

I The semantics is an obvious extension of the fuzzy FOL case

Fuzzy RDFS Basics

Crisp RDFS Syntax

I Pairwise disjoint alphabets
I U (RDFS URI references)
I B (Blank nodes)
I L (Literals)

I For simplicity we will denote unions of these sets simply
concatenating their names

I We call elements in UBL terms (denoted t)
I We call elements in B variables (denoted x)

I RDFS triple (or RDFS atom):

(s,p,o) ∈ UBL× U× UBL

I s is the subject
I p is the predicate
I o is the object

I Example:
(airplane,has,enginefault)

ρdf (restricted RDFS)

I ρdf (read rho-df, the ρ from restricted rdfs)
I ρdf is defined as the following subset of the RDFS

vocabulary:

ρdf = {sp, sc, type,dom, range}

I (p, sp,q)
I property p is a sub property of property q

I (c, sc,d)
I class c is a sub class of class d

I (a, type,b)
I a is of type b

I (p,dom, c)
I domain of property p is c

I (p, range, c)
I range of property p is c

RDF Semantics

I RDF interpretation I over a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉 ,

where
I ∆R ,∆P ,∆C ,∆L are the interpretations domains of I
I P[[·]],C[[·]], ·I are the interpretation functions of I

I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉

1. ∆R is a nonempty set of resources, called the domain or universe of I;

2. ∆P is a set of property names (not necessarily disjoint from ∆R);

3. ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource
denotes a class of resources;

4. ∆L ⊆ ∆R , the set of literal values, ∆L contains all plain literals in L ∩ V ;

5. P[[·]] maps each property name p ∈ ∆P into a subset P[[p]] ⊆ ∆R ×∆R ,
i.e. assigns an extension to each property name;

6. C[[·]] maps each class c ∈ ∆C into a subset C[[c]] ⊆ ∆R , i.e. assigns a
set of resources to every resource denoting a class;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , i.e. assigns a
resource or a property name to each element of UL in V , and such that
·I is the identity for plain literals and assigns an element in ∆R to
elements in L;

8. ·I maps each variable x ∈ B into a value xI ∈ ∆R , i.e. assigns a
resource to each variable in B.

Models

Intuitively,
I A ground triple (s,p,o) in an RDF graph G will be true

under the interpretation I if
I p is interpreted as a property name
I s and o are interpreted as resources
I the interpretation of the pair (s,o) belongs to the extension

of the property assigned to p
I Blank nodes, i.e. variables, work as existential variables: a

triple ((x ,p,o) with x ∈ B would be true under I if
I there exists a resource s such that (s,p,o) is true under I

Models (cont.)

Let G be a graph over ρdf.
I An interpretation I is a model of G under ρdf, denoted
I |= G, iff

I I is an interpretation over the vocabulary ρdf ∪ universe(G)
I I satisfies the following conditions:

Simple:

1. for each (s, p, o) ∈ G, pI ∈ ∆P and (sI , oI) ∈ P[[pI]];

Subproperty:

1. P[[spI]] is transitive over ∆P ;
2. if (p, q) ∈ P[[spI]] then p, q ∈ ∆P and P[[p]] ⊆ P[[q]];

Models (cont.)

Subclass:

1. P[[scI]] is transitive over ∆C ;
2. if (c, d) ∈ P[[scI]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d]];

Typing I:

1. x ∈ C[[c]] iff (x , c) ∈ P[[typeI]];
2. if (p, c) ∈ P[[domI]] and (x , y) ∈ P[[p]] then x ∈ C[[c]];
3. if (p, c) ∈ P[[rangeI]] and (x , y) ∈ P[[p]] then y ∈ C[[c]];

Typing II:

1. For each e ∈ ρdf, eI ∈ ∆P

2. if (p, c) ∈ P[[domI]] then p ∈ ∆P and c ∈ ∆C

3. if (p, c) ∈ P[[rangeI]] then p ∈ ∆P and c ∈ ∆C

4. if (x , c) ∈ P[[typeI]] then c ∈ ∆C

Entailment

I G entails H under ρdf, denoted G |= H, iff
I every model under ρdf of G is also a model under ρdf of H

I Note: often P[[spI]] (resp. C[[scI]]) is also reflexive over ∆P
(resp. ∆C)

I We omit this requirement and, thus, do NOT support
inferences such as

G |= (a, sp,a)

G |= (a, sc,a)

which anyway are of marginal interest

Example

G =

 (o1, IsAbout , snoopy) (o2, IsAbout ,woodstock)
(snoopy , type, dog) (woodstock , type, bird)
(dog, sc, animal) (bird , sc, animal)



Deduction System for RDF

1. Simple:
G
G′ for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B),(B,sp,C)
(A,sp,C)

(b) (A,sp,B),(X ,A,Y)
(X ,B,Y)

3. Subclass:

(a) (A,sc,B),(B,sc,C)
(A,sc,C)

(b) (A,sc,B),(X ,type,A)
(X ,type,B)

4. Typing:

(a) (A,dom,B),(X ,A,Y)
(X ,type,B)

(b) (A,range,B),(X ,A,Y)
(Y ,type,B)

5. Implicit Typing:

(a) (A,dom,B),(C,sp,A),(X ,C,Y)
(X ,type,B)

(b) (A,range,B),(C,sp,A),(X ,C,Y)
(Y ,type,B)

RDFS Query Answering

I We assume that a RDF graph G is ground and closed, i.e., G is closed under the application of the rules
(2)-(5)

I Conjunctive query: is a Datalog-like rule of the form

q(x)← ∃y.τ1, . . . , τn

where
I n ≥ 1, τ1, . . . , tn are triples
I x is a vector of variables occurring in τ1, . . . , τn , called the distinguished variables
I y are so-called non-distinguished variables and are distinct from the variables in x

I each variable occurring in τi is either a distinguished variable or a non-distinguished variable

I If clear from the context, we may omit the exitential quantification ∃y
I For instance, the query

q(x, y)← (x, creates, y), (x, type, Flemish), (x, paints, y), (y, exhibited,Uffizi)

has intended meaning to retrieve all the artifacts x created by Flemish artists y , being exhibited at Uffizi
Gallery

RDF Query Answering (cont.)

I A simple query answering procedure is the following:
I Compute the closure of a graph off-line
I Store the RDF triples into a Relational database
I Translate the query into a SQL statement
I Execute the SQL statement over the relational database

I In practice, some care should be in place due to the large
size of data: ≥ 109 triples

I To date, several systems exists

Example

G =

 (o1, IsAbout , snoopy) (o2, IsAbout ,woodstock)
(snoopy , type, dog) (woodstock , type, bird)
(dog, sc, animal) (bird , sc, animal)


Consider the query

q(x) ← (x , IsAbout , y), (y , type,Animal)

Then

answer(G, q) = {o1, o2}

Fuzzy RDFS

I Triples may have attached a degree in [0,1]: for n ∈ [0,1]

(subject ,predicate,object) : n

I Meaning: the degree of truth of the statement is at least n
I For instance,

(o1, IsAbout , snoopy) : 0.8

Fuzzy RDF Syntax

I Fuzzy RDF triple (or Fuzzy RDF atom):

τ : n ∈ (UBL× U× UBL)× [0,1]

I s ∈ UBL is the subject
I p ∈ U is the predicate
I o ∈ UBL is the object
I n ∈ (0,1] is the degree of truth

I Example:
(audiTT, type,SportCar) : 0.8

Fuzzy RDF Semantics

I Fix a t-norm ⊗
I Fuzzy RDF interpretation I over a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉 ,

where
I ∆R ,∆P ,∆C ,∆L are the interpretations domains of I
I P[[·]],C[[·]], ·I are the interpretation functions of I

I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉

1. ∆R is a nonempty set of resources, called the domain or universe of I;

2. ∆P is a set of property names (not necessarily disjoint from ∆R);

3. ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource
denotes a class of resources;

4. ∆L ⊆ ∆R , the set of literal values, ∆L contains all plain literals in L ∩ V ;

5. P[[·]] maps each property name p ∈ ∆P into a function
P[[p]] : ∆R ×∆R → [0, 1], i.e. assigns a degree to each pair of
resources, denoting the degree of being the pair an instance of the
property p;

6. C[[·]] maps each class c ∈ ∆C into a function C[[c]] : ∆R → [0, 1],
i.e. assigns a degree to every resource, denoting the degree of being
the resource an instance of the class c;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , i.e. assigns a
resource or a property name to each element of UL in V , and such that
·I is the identity for plain literals and assigns an element in ∆R to
elements in L;

8. ·I maps each variable x ∈ B into a value xI ∈ ∆R , i.e. assigns a
resource to each variable in B.

Models

Let G be a graph over ρdf.
I An interpretation I is a model of G under ρdf, denoted
I |= G, iff

I I is an interpretation over the vocabulary ρdf ∪ universe(G)
I I satisfies the following conditions:

Simple:

1. for each (s, p, o) : n ∈ G, pI ∈ ∆P and
P[[pI]](sI , oI) ≥ n;

Subproperty:

1. P[[spI]](p, q)⊗ P[[spI]](q, r) ≤ P[[spI]](p, r);
2. P[[pI]](x , y)⊗ P[[spI]](p, q) ≤ P[[qI]](x , y);

Models (cont.)

Subclass:
1. P[[scI]](c, d)⊗ P[[scI]](d , e) ≤ P[[scI]](c, e);
2. C[[cI]](x)⊗ P[[scI]](c, d) ≤ P[[dI]](x);

Typing I:
1. C[[c]](x) = P[[typeI]](x , c);
2. P[[domI]](p, c)⊗ P[[p]](x , y) ≤ C[[c]](x);
3. P[[rangeI]](p, c)⊗ P[[p]](x , y) ≤ C[[c]](y);

Typing II:
1. For each e ∈ ρdf, eI ∈ ∆P ;
2. P[[spI]](p, q) is defined only for p, q ∈ ∆P ;
3. C[[scI]](c, d) is defined only for c, d ∈ ∆C ;
4. P[[domI]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;
5. P[[rangeI]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;
6. P[[typeI]](s, c) is defined only for c ∈ ∆C .

Example & Model

G = {(audiTT , type, SportsCar) : 0.8, (SportsCar, sc, PassengerCar) : 0.9} t-norm: Product

I = 〈∆R ,∆P ,∆C ,∆L, P[[·]],C[[·]], ·I〉

∆R = {audiTT , SportsCar, PassengerCar}
∆P = {type, sc}
∆C = {SportsCar, PassengerCar}

P[[type]] = {〈audiTT , SportsCar〉 : 0.8, 〈audiTT , PassengerCar〉 : 0.72}
P[[sc]] = {〈SportsCar, PassengerCar〉 : 0.9}

C[[SportsCar]] = {audiTT : 0.8}
C[[PassengerCar]] = {audiTT : 0.72}

tI = t for all t ∈ UL

I |= G I is a model of G

Deduction System for fuzzy RDFS

I Very simple:

(AG)
τ1 : n1, ..., τk : nk , {τ1, . . . τk} `RDFS τ

τ :
⊗

i λi

Deduction System for fuzzy RDFS

1. Simple:

G
G′ for G′ ⊆ G

2. Subproperty:

(a)
(A, sp, B) : n,(B, sp,C) : m

(A, sp,C) : n ⊗ m (b)
(A, sp, B) : n,(X , A, Y) : m

(X , B, Y) : n ⊗ m

3. Subclass:

(a)
(A, sc, B) : n,(B, sc,C) : m

(A, sc,C) : n ⊗ m (b)
(A, sc, B) : n,(X , type, A) : m

(X , type, B) : n ⊗ m

4. Typing:

(a)
(A, dom, B) : n,(X , A, Y) : m

(X , type, B) : n ⊗ m (b)
(A, range, B) : n,(X , A, Y) : m

(Y , type, B) : n ⊗ m

5. Implicit Typing:

(a)
(A, dom, B) : n,(C, sp, A) : m,(X ,C, Y) : r

(X , type, B) : n ⊗ m ⊗ r

(b)
(A, range, B) : n,(C, sp, A) : m,(X ,C, Y) : r

(Y , type, B) : n ⊗ m ⊗ r

Fuzzy RDFS Query Answering
I We assume that a fuzzy RDF graph G is ground and closed, i.e., G is closed under the application of the

rules (2)-(5)
I Conjunctive query: extends a crisp RDF query and is of the form

q(x) : s ← ∃y.τ1 : s1, . . . , τn : sn, s = f (s1, . . . , sn, p1(z1), . . . , ph(zh))

where additionally
I zi are tuples of terms in UL or variables in x or y;
I pj is an nj -ary fuzzy predicate assigning to each nj -ary tuple tj in UL a score pj (tj) ∈ [0, 1]. Such

predicates are called expensive predicates as the score is not pre-computed off-line, but is
computed on query execution. We require that an n-ary fuzzy predicate p is safe, that is, there is
not an m-ary fuzzy predicate p′ such that m < n and p = p′. Informally, all parameters are
needed in the definition of p;

I f is a scoring function f : ([0, 1])n+h → [0, 1], which combines the scores si of the n triples and
the h fuzzy predicates into an overall score to be assigned to the rule head. We assume that f is
monotone, that is, for each v, v′ ∈ ([0, 1])n+h such that v ≤ v′, it holds f (v) ≤ f (v′), where
(v1, . . . , vn+h) ≤ (v′1, . . . , v′n+h) iff vi ≤ v′i for all i ;

I the scoring variables s and si are distinct from those in x and y and s is distinct from each si
I If clear from the context, we may omit the exitential quantification ∃y
I We may omit si and in that case si = 1 is assumed
I s = f (s1, . . . , sn, p1(z1), . . . , ph(zh)) is called the scoring atom. We may also omit the scoring atom and

in that case s = 1 is assumed.
I For instance, the query

q(x) : s ← (x, type, SportCar) : s1, (x, hasPrice, y), s = s1 · cheap(y)

where e.g. cheap(p) = ls(0, 10000, 12000), has intended meaning to retrieve all cheap sports car. Any
answer is scored according to the product of being cheap and a sports car

Fuzzy RDF Query Answering (cont.)

Top-k Retrieval: Given a fuzzy graph G, and a query q, retrieve
k answers t : s with maximal scores and rank them
in decreasing order relative to the score s, denoted

ansk (G,q) = Topk answer(G,q)

I A simple query answering procedure is the following:
I Compute the closure of a graph off-line
I Store the fuzzy RDF triples into a relational database

supporting Top-k retrieval (e.g., RankSQL, Postgres)
I Translate the fuzzy query into a top-k SQL statement
I Execute the SQL statement over the relational database
I Few systems exists, e.g. FuzzyRDF, AnQL

(http://anql.deri.org/)

Example

G =


(o1, IsAbout , snoopy) : 0.8 (o2, IsAbout ,woodstock) : 0.9
(snoopy , type, dog) (woodstock , type, bird)
(Bird , sc,SmallAnimal) : 0.7 (Dog, sc,SmallAnimal) : 0.4
(dog, sc,Animal) (bird , sc,Animal)
(SmallAnimal, sc,Animal)


Consider the query

q(x) : s ← (x , IsAbout , y) : s1, (y , type,Animal) : s2, s = s1 · s2

Then (under any t-norm)

ans(G, q) = {o1 : 0.32, o2 : 0.63}, ans1(G, q) = {o2 : 0.63}

Annotation domains & RDFS

I Generalisation of fuzzy RDFS
I a triple is annotated with a value λ taken from a so-called

annotation domain, rather than with a value in [0,1]
I allows to deal with several domains (such as, fuzzy,

temporal, provenance) and their combination, in a uniform
way

I Time
I (umberto,workedFor , IEI)
I true during 1992–2001

I Fuzzyness
I (WingateHotel , closeTo,RR11Venue)
I true to some degree

I Provenance
I (umberto, knows,didier)
I true in http://www.straccia.info/foaf.rdf

http://www.straccia.info/foaf.rdf

I Annotation Domain: idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉
where ⊕ is >-annihilating, i.e.

1. ⊕ is idempotent, commutative, associative;
2. ⊗ is commutative and associative;
3. ⊥⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;
4. ⊗ is distributive over ⊕,

i.e. λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);
I Induced partial order:

λ1 � λ2 if and only if λ1 ⊕ λ2 = λ2

I Annotated triple: for λ ∈ L

(s,p,o) : λ

I For instance,
(umberto,workedFor , IEI) : [1992, 2001]

(WingateHotel, closeTo,RR11Venue) : 0.8

(umberto, knows, didier) : http://www.straccia.info/foaf.rdf

http://www.straccia.info/foaf.rdf

Annotation Domains: Examples

Illustration by Example: Time
I An Annotation Domain consists of

I A set L of annotation values
I e.g. [1968, 2000] and {[1968, 2000], [2003, 2004]}

I An order between elements:
I if λ � λ′, then τ : λ is true to a lesser extent than τ ′ : λ′
I e.g. [1968, 2000] � [1952, 2007] (� is ⊆)

I Top and bottom ellements:
I > = [−∞,+∞],⊥ = ∅

I “Conjunction” function ⊗
I [1992, 2001]⊗ [1968, 2000] = [1992, 2000] (⊗ is ∩)

I “Combination” function ⊕
I [1992, 2001]⊕ [1995, 2003] = [1992, 2003]
I [1992, 1996]⊕ [2001, 2009] = {[1992, 1996], [2001, 2009]}

Examples

I Fuzzy: (WingateHotel , closeTo,RR11Venue) : 0.8

I L = [0,1]
I ⊗ = any t-norm
I ∨ = max

I Provenance: (umberto, knows,didier) : p

I L = DNF propositional formulae over URIs
I ⊗ = ∧
I ∨ = ∨

I Multiple Domains: our frameworks allows to combine domains

(CountryXXX , type,Dangerous) : 〈[1975,1983],0.8,0.6〉

Time × Fuzzy × Trust

I Inference rule:

τ1 : λ1, . . . , τk : λk , {τ1, . . . , τk} `RDFS τ

τ :
⊗

i λi

I Annotated conjunctive queries are as fuzzy queries, except that
now variables s and si range over L in place of [0,1];

I A query answering procedure is similar as for the fuzzy case:
compute the closure, store it on a relation database and
transform an annotated CQ into a SQL query

I Computational complexity: same as for crisp RDFS plus the cost
of ⊗, ⊕ and the scoring function f in the body of a query

I A prototype Prolog implementation is available

http://anql.deri.org/

http://anql.deri.org/

Fuzzy OWL Basics

OWL
I OWL Family

I OWL full is union of OWL syntax and RDF (Undecidable)
I OWL DL restricted to Description Logics fragment (decidable in

NEXPTIME)
I OWL Lite is “easier to implement” subset of OWL DL (decidable in

EXPTIME)
I OWL 2 new OWL standard (decidable, NEXPTIME-hard)
I OWL 2 profiles

I OWL QL (query answering LOGSPACE)
I OWL EL (classification in polynomial time)
I OWL RL (EXPTIME, intersection of Description Logics and

Logic Programming)
I Semantic layering

I OWL 2 within Description Logic (DL) fragment
I OWL DL is based on SHOIN (D)

I OWL Lite is based on SHIF(D)

I OWL 2 is based on SROIQ(D)

I OWL QL is based on DL− Lite
I OWL EL is based on EL
I OWL RL is a Datalog fragment

The DL Family

I A given DL is defined by set of concept and role forming operators
I Basic language: ALC(Attributive Language with Complement)

Syntax Semantics Example
C,D → > | >(x)

⊥ | ⊥(x)
A | A(x) Human

C u D | C(x) ∧ D(x) Human u Male
C t D | C(x) ∨ D(x) Nice t Rich
¬C | ¬C(x) ¬Meat
∃R.C | ∃y.R(x, y) ∧ C(y) ∃has_child.Blond
∀R.C ∀y.R(x, y)⇒ C(y) ∀has_child.Human

C v D ∀x.C(x)⇒ D(x) Happy_Father v Man u ∃has_child.Female
a:C C(a) John:Happy_Father

Note on DL Naming
AL: C,D −→ > | ⊥ |A |C u D | ¬A | ∃R.> |∀R.C
C: Concept negation, ¬C. Thus, ALC = AL+ C
S: Used for ALC with transitive roles R+

U : Concept disjunction, C1 t C2

E : Existential quantification, ∃R.C
H: Role inclusion axioms, R1 v R2, e.g. is_component_of v is_part_of
N : Number restrictions, (≥ n R) and (≤ n R), e.g. (≥ 3 has_Child) (has

at least 3 children)
Q: Qualified number restrictions, (≥ n R.C) and (≤ n R.C),

e.g. (≤ 2 has_Child .Adult) (has at most 2 adult children)
O: Nominals (singleton class), {a}, e.g. ∃has_child .{mary}.

Note: a:C equiv to {a} v C and (a, b):R equiv to {a} v ∃R.{b}
I: Inverse role, R−, e.g. isPartOf = hasPart−

F : Functional role, f , e.g. functional(hasAge)

R+: transitive role, e.g. transitive(isPartOf)

For instance,

SHIF = S +H+ I + F = ALCR+HIF OWL-Lite
SHOIN = S +H+O + I +N = ALCR+HOIN OWL-DL
SROIQ = S +R+O + I +Q = ALCR+ROIN OWL 2

Semantics of Additional Constructs

H: Role inclusion axioms, I |= R1 v R2 iff R1
I ⊆ R1

I

N : Number restrictions,
(≥ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≥ n},
(≤ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≤ n}

Q: Qualified number restrictions,
(≥ n R.C)I = {x ∈ |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≥ n},
(≤ n R.C)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≤ n}

O: Nominals (singleton class), {a}I = {aI}

I: Inverse role, (R−)
I

= {〈x , y〉 | 〈y , x〉 ∈ RI}
F : Functional role, I |= fun(f) iff ∀z∀y∀z if 〈x , y〉 ∈ fI and 〈x , z〉 ∈ fI

the y = z

R+: transitive role,
(R+)I = {〈x , y〉 | ∃z such that 〈x , z〉 ∈ RI ∧ 〈z, y〉 ∈ RI}

Basics on Concrete Domains

I Concrete domains: reals, integers, strings, . . .

(tim, 14):hasAge
(sf , “SoftComputing”):hasAcronym
(source1, “ComputerScience”):isAbout
(service2, “InformationRetrievalTool ′′):Matches
Minor = Person u ∃hasAge. ≤18

I Semantics: a clean separation between “object” classes and concrete
domains

I D = 〈∆D,ΦD〉
I ∆D is an interpretation domain
I ΦD is the set of concrete domain predicates d with a

predefined arity n and fixed interpretation dD ⊆ ∆n
D

I Concrete properties: RI ⊆ ∆I ×∆D

I Notation: (D). E.g., ALC(D) is ALC + concrete domains

DL Knowledge Base

I A DL Knowledge Base is a pair KB = 〈T ,A〉, where
I T is a TBox

I containing general inclusion axioms of the form C v D,
I concept definitions of the form A = C
I primitive concept definitions of the form A v C
I role inclusions of the form R v P
I role equivalence of the form R = P

I A is a ABox
I containing assertions of the form a:C
I containing assertions of the form (a, b):R
I containing (in) equality Axioms of the form a = b and a 6= b

I An interpretation I is a model of KB, written I |= KB iff I |= T and
I |= A, where

I I |= T (I is a model of T) iff I is a model of each element in T
I I |= A (I is a model of A) iff I is a model of each element in A

Basic Inference Problems (Formally)

Consistency: Check if knowledge is meaningful
I Is KB satisfiability? 7→ Is there some model I of KB ?
I Is C satisfiability? 7→ CI 6= ∅ for some some model I of

KB ?

Subsumption: structure knowledge, compute taxonomy
I KB |= C v D ? 7→ Is it true that CI ⊆ DI for all models
I of KB ?

Equivalence: check if two classes denote same set of instances
I KB |= C = D ? 7→ Is it true that CI = DI for all models
I of KB ?

Instantiation: check if individual a instance of class C
I KB |= a:C ? 7→ Is it true that aI ∈ CI for all models I of

KB ?

Retrieval: retrieve set of individuals that instantiate C
I Compute the set {a | KB |= a:C}

Reduction to Satisfiability

Problems are all reducible to KB satisfiability

Subsumption: KB |= C v D iff 〈T ,A ∪ {a:C u ¬D}〉 not
satisfiable, where a is a new individual

Equivalence: KB |= C = D iff KB |= C v D and KB |= D v C
Instantiation: KB |= a:C iff 〈T ,A ∪ {a:¬C}〉 not satisfiable

Retrieval: The computation of the set {a | KB |= a:C} is
reducible to the instance checking problem

Reasoning in DLs: Basics

I Tableaux algorithm deciding satisfiability
I Try to build a tree-like model I of the KB

I Decompose concepts C syntactically

I Apply tableau expansion rules
I Infer constraints on elements of model

I Tableau rules correspond to constructors in logic (u,t, . . .)

I Some rules are nondeterministic (e.g., t,≤)
I In practice, this means search

I Stop when no more rules applicable or clash occurs

I Clash is an obvious contradiction, e.g., A(x),¬A(x)

I Cycle check (blocking) may be needed for termination

Negation Normal Form (NNF)

I We have to transform concepts into Negation Normal
Form: push negation inside using de Morgan’ laws

¬> 7→ ⊥
¬ ⊥ 7→ >
¬¬C 7→ C

¬(C1 u C2) 7→ ¬C1 t ¬C2
¬(C1 t C2) 7→ ¬C1 u ¬C2

and
¬(∃R.C) 7→ ∀R.¬C
¬(∀R.C) 7→ ∃R.¬C

Completion-Forest

I This is a forest of trees, where
I each node x is labelled with a set L(x) of concepts

I each edge 〈x, y〉 is labelled with L(〈x, y〉) = {R} for some role R (edges correspond to

relationships between pairs of individuals)

I The forest is initialized with
I a root node a, labelled L(x) = ∅ for each individual a occurring in the KB

I an edge 〈a, b〉 labelled L(〈a, b〉) = {R} for each (a, b):R occurring in the KB

I Then, for each a:C occurring in the KB, set L(a)→ L(a) ∪ {C}
I The algorithm expands the tree either by extending L(x) for some node x or by adding new leaf nodes.

I Edges are added when expanding ∃R.C
I A completion-forest contains a clash if, for a node x , {C,¬C} ⊆ L(x)

I If nodes x and y are connected by an edge〈x, y〉, then y is called a successor of x and x is called a
predecessor of y . Ancestor is the transitive closure of predecessor.

I A node y is called an R-successor of a node x if y is a successor of x and L(〈x, y〉) = {R}.
I The algorithm returns “satisfiable" if rules can be applied s.t. they yield a clash-free, complete (no more

rules can be applied) completion forest

ALC Tableau rules without GCI’s

Rule Description
(u) if 1. C1 u C2 ∈ L(x) and

2. {C1,C2} 6⊆ L(x)
then L(x)→ L(x) ∪ {C1,C2}

(t) if 1. C1 t C2 ∈ L(x) and
2. {C1,C2} ∩ L(x) = ∅

then L(x)→ L(x) ∪ {C} for some C ∈ {C1,C2}

(∃) if 1. ∃R.C ∈ L(x) and
2. x has no R-successor y with C ∈ L(y)

then create a new node y with L(〈x , y〉) = {R} and L(y) = {C}

(∀) if 1. ∀R.C ∈ L(x) and
2. x has an R-successor y with C 6∈ L(y)

then L(y)→ L(y) ∪ {C}

Fuzzy DLs

The semantics is an immediate consequence of the First-Order-Logic translation of DLs expressions

Interpretation:
I = ∆I

CI : ∆I → [0, 1]

RI : ∆I × ∆I → [0, 1]

⊗ = t-norm
⊕ = s-norm
¬ = negation
⇒ = implication

Concepts:

Syntax Semantics
C,D −→ > | >I (x) = 1

⊥ | ⊥I (x) = 0
A | AI (x) ∈ [0, 1]

C u D | (C1 u C2)I (x) = C1
I (x)⊗ C2

I (x)

C t D | (C1 t C2)I (x) = C1
I (x)⊕ C2

I (x)

¬C | (¬C)I (x) = ¬CI (x)

∃R.C | (∃R.C)I (x) = supy∈∆I RI (x, y)⊗ CI (y)

∀R.C (∀R.C)I (x) = infy∈∆I RI (x, y)⇒ CI (y)}

Assertions: a:C : r , I |= a:C : r iff CI (aI) ≥ r (similarly for roles)
I individual a is instance of concept C at least to degree r , r ∈ [0, 1] ∩ Q

Inclusion axioms: C v D : r ,
I I |= C v D : r iff infx∈∆I CI (x)⇒ DI (x) ≥ r

Main Inference Problems

Graded entailment: Check if DL axiom α is entailed to degree at least r
I KB |= α : r ?

BED: Best Entailment Degree problem
I bed(KB, α) = sup{r | KB |= α : r}

BSD: Best Satisfiability Degree problem
I bsd(KB,C) = supI|=KB{C

I(aI)}, for new individual a

Top-k retrieval: Retrieve the top-k individuals that instantiate C w.r.t. best
truth value bound

I ansk (KB,C) = Topk{〈a, r〉 | r = bed(KB, a:C)}

Towards fuzzy OWL 2 and its Profiles

I Recall that OWL 2 relates to SROIQ(D)

I We need to extend the semantics of fuzzy ALC to fuzzy
SROIQ(D)

I Additionally, we add
I modifiers (e.g., very)
I concrete fuzzy concepts (e.g., Young)
I both additions have explicit membership functions
I other extensions:

I aggregation functions: weighted sum, OWA, fuzzy integrals
I fuzzy rough sets, fuzzy spatial, fuzzy numbers

Concrete fuzzy concepts

I E.g., Small, Young,High, etc. with explicit membership function

I Use the idea of concrete domains:
I D = 〈∆β ,Φβ〉
I ∆β is an interpretation domain
I Φβ is the set of concrete fuzzy domain predicates d with a predefined arity n = 1, 2 and fixed

interpretation dβ : ∆n
β → [0, 1]

I For instance,

Minor = Person u ∃hasAge. ≤18
YoungPerson = Person u ∃hasAge.Young

functional(hasAge)

Modifiers

I Very , moreOrLess, slightly , etc.

I Apply to fuzzy sets to change their membership function
I very(x) = x2

I slightly(x) =
√

x

I For instance,

SportsCar = Car u ∃speed.very(High)

Fuzzy SHOIN (D)

Concepts:
Syntax Semantics

C,D −→ > | >(x)
⊥ | ⊥ (x)

A | A(x)
(C u D) | C1(x)⊗ C2(x)
(C t D) | C1(x)⊕ C2(x)

(¬C) | ¬C(x)
(∃R.C) | ∃x R(x, y)⊗ C(y)
(∀R.C) | ∀x R(x, y)⇒ C(y)
{a} | x = a

(≥ n R) | ∃y1, . . . , yn.⊗n
i=1 R(x, yi)⊗⊗1≤i<j≤nyi 6= yj

(≤ n R) | ∀y1, . . . , yn+1.⊗n+1
i=1 R(x, yi)⇒ ⊕1≤i<j≤n+1yi = yj

FCC | µFCC (x)
M(C) | µM (C(x))∑
i wi · Ci w1 · C1(x) + · · ·wn · Cn(x) (

∑
i wi = 1)

R −→ P | P(x, y)

P− | P(y, x)

Assertions:
Syntax Semantics

α −→ a:C : r | C(a) ≥ r
(a, b):R : r R(a, b) ≥ r

Axioms:

Syntax Semantics
τ −→ C v D : r | ∀x.C(x)⇒ D(x) ≥ r

fun(R) | ∀x∀y∀z R(x, y) ∧ R(x, z)⇒ y = z
trans(R) (∃z R(x, z) ∧ R(z, y))⇒ R(x, y)

Example (Graded Entailment)

audi_tt mg ferrari_enzo

Car speed
audi_tt 243
mg ≤ 170
ferrari_enzo ≥ 350

SportsCar = Car u ∃hasSpeed.very(High)

KB |= ferrari_enzo:SportsCar : 1
KB |= audi_tt :SportsCar : 0.92
KB |= mg:¬SportsCar : 0.72

Example (Graded Subsumption)

Minor = Person u ∃hasAge. ≤18

YoungPerson = Person u ∃hasAge.Young

KB |= Minor v YoungPerson : 0.6

Note: without an explicit membership function of Young, this inference cannot
be drawn

Example (Simplified Negotiation)

I a car seller sells an Audi TT for 31500e, as from the catalog price.
I a buyer is looking for a sports-car, but wants to to pay not more than around 30000e
I classical DLs: the problem relies on the crisp conditions on price

I more fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)
I seller may consider optimal to sell above 31500e, but can go down to 30500e
I the buyer prefers to spend less than 30000e, but can go up to 32000e

AudiTT = SportsCar u ∃hasPrice.R(x ; 30500, 31500)
Query = SportsCar u ∃hasPrice.L(x ; 30000, 32000)

I highest degree to which the concept
C = AudiTT u Query
is satisfiable is 0.75 (the possibility that the Audi TT and the query matches is 0.75)

I the car may be sold at 31250e

Reasoning in Fuzzy ALC, under Zadeh Semantics

I Applies technique based on Mixed Integer Programming
(MILP) for fuzzy propositional logic to ALC calculus

I For each concept assertion α of the form a:C, we use
variable xα, which holds the degree of truth of α

I It can be shown that

bed(KB, (a, b):R) = bed(KB ∪ {b:B : 1}, a:∃R.B)
bed(KB,C v D) = min x such that KB ∪ {b:C u ¬D : 1− x} satisfiable
bed(KB, a:C) = min x such that KB ∪ {a:¬C : 1− x} satisfiable
bsd(KB,C) = min−x such that KB ∪ {b:C : x} satisfiable

where b is a new individual and B is a new concept

Satisfiability Testing

I The notion of completion forest F is similar to the case of ALC
I F contains a root node ai for each individual ai occurring in
A

I F contains an edge 〈a,b〉 for each (a,b):R : n ∈ A
I for each a:C : n ∈ A, we add both C to L(a) and xa:C ≥ n

to CF
I for each (a,b):R : n ∈ A, we add both R to L(〈a,b〉) and

x(a,b):R ≥ n to CF

I The notion of blocking is as for crisp ALC
I F is then expanded by repeatedly applying the rules described

below

I The completion-forest is complete when none of the rules are
applicable

I Then, the bMILP problem on CF is solved

Fuzzy ALC Tableau rules with GCIs (Zadeh
semantics)

Rule Description
(var) For variable xv :C add xv :C ∈ [0, 1] to CF . For variable x(v,w):R , add x(v,w):R ∈ [0, 1] to CF

(Ā) if ¬A ∈ L(v) then add xv :A = 1− xv :¬A to CF

(⊥) If ⊥ ∈ L(v) then add xv :⊥ = 0 to CF

(>) If > ∈ L(v) then add xv :> = 1 to CF

(u) if C1 u C2 ∈ L(v), v is not indirectly blocked
then L(v)→ L(v) ∪ {C1,C2}, and add xv :C1

⊗ xv :C2
≥ xv :C1 u C2

to CF

(t) if C1 t C2 ∈ L(v), v is not indirectly blocked
then L(v)→ L(v) ∪ {C1,C2}, and add xv :C1

⊕ xv :C2
≥ xv :C1 t C2

to CF

(∀) if ∀R.C ∈ L(v), v is not indirectly blocked
then L(w)→ L(w) ∪ {C}, and add xw :C ≥ xv :∀R.C ⊗ x(v,w):R to CF

(∃) if ∃R.C ∈ L(v), v is not blocked
then create new node w with L(〈v,w〉) = {R} and L(w) = {C}, and add xw :C ⊗ x(v,w):R ≥ xv :∃R.C to CF

(v) if C v D : n ∈ T , v is not indirectly blocked
then L(v)→ L(v) ∪ {C,D}, and add xv :D ≥ xv :C ⊗ n to CF

I As fuzzy DL extensions involving
I concrete domains
I modifiers

are combinations of linear functions, they can be translated
into MILP, MIQCP, and MINLP equations

I Therefore, the algorithm can be extended to fuzzy DLs with
concrete domains

I For a fuzzy DL system, see fuzzyDL, Fire, DeLorean
I Systems supporting top-k retrieval: based on

DL-Lite/DLR-Lite
I DLMedia (Ontology mediated Multimedia data retrieval)
I Softfacts (Ontology mediated Database data retrieval)

I Protege plug-in to encode Fuzzy OWL ontologies using
OWL 2 Editor Protege exists

I Computational complexity of satisfiability problem:
I EXPTIME for ALC with GCIs w.r.t. {0, 1

n , . . . ,
n−1

n ,1}
I EXPTIME for ALC with GCIs w.r.t. [0,1] under Zadeh

semantics
I UNDECIDABLE (!!) for ALC with GCIs w.r.t. [0,1] under

Product or Łukasiewicz semantics
I For EL and DL-Lite family, same complexity as for the crisp

case

Novel Application: Learning fuzzy GCIs from data
I A FOIL-like algorithm to learn fuzzy GCIs from data
I Example: Hotel ontology

Park v Attraction Tower v Attraction
Attraction v Site Hotel v Site

Example: Learning

I H = GoodHotel
I E+ = {GoodHotel(h1)[0.6],GoodHotel(h2)[0.8]}
I E− = {GoodHotel(h3)[0.4]}.
I r0 : > v GoodHotel

r1 : Hotel v GoodHotel
r2 : Hotel u ∃cheapPrice.> v GoodHotel
r3 : Hotel u ∃cheapPrice.> u ∃closeTo.Attraction v GoodHotel
r4 : Hotel u ∃cheapPrice.> u ∃closeTo.Park v GoodHotel
r5 : Hotel u ∃cheapPrice.> u ∃closeTo.Tower v GoodHotel

I Consequence: r5 becomes part of H

Annotation domains & OWL

I For OWL 2, it it is like for RDFS, but annotation domain has
to be a complete lattice

I satisfiability problem is inherited from crisp variant if lattice
is finite, else UNDECIDABLE (even for ALC with GCIs)

I Exception for OWL profiles OWL EL, OWL QL and OWL
RL: annotation domains may be as for RDFS

I the complexity is inherited from their crisp variants, plus
complexity of domain operators

Fuzzy RIF Basics

Crisp RIF

I RIF is a family of rule languages
I RIF-Core: this corresponds to Datalog
I RIF-BLD, Basic Logic Dialect: this corresponds to definite

Horn rules with equality and a standard first-order
semantics, and subsumes RIF-Core

I RIF-PRD, Production Rule Dialect: subsumes RIF-Core.
I Production rules have an if part, or condition, and a then

part, or action. The “condition” is as usual, but the “then”
part contains actions. An action can assert facts, modify
facts, retract facts, and have other side-effects

LPs Basics (for ease, Datalog)

I Predicates are n-ary
I Terms are variables or constants
I Facts ground atoms

For instance,
has_parent(mary , jo)

I Rules are of the form

P(x)← ϕ(x,y)

where ϕ(x,y) is a formula built from atoms of the form B(z)
and connectors ∧,∨,0,1
For instance,

has_father(x , y) ← has_parent(x , y) ∧Male(y)

I Extensional database (EDB): set of facts
I Intentional database (IDB): set of rules
I Logic Program P:

I P = EDB ∪ IDB
I No predicate symbol in EDB occurs in the head of a rule in

IDB
I The principle is that we do not allow that IDB may redefine

the extension of predicates in EDB

I EDB is usually, stored into a relational database

LPs Semantics: FOL semantics

I P∗ is constructed as follows:
1. set P∗ to the set of all ground instantiations of rules in P;
2. replace a fact p(c) in P∗ with the rule p(c)← 1
3. if atom A is not head of any rule in P∗, then add A← 0 to P∗;
4. replace several rules in P∗ having same head

A← ϕ1
A← ϕ2

...
A← ϕn

 with A← ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn .

I Note: in P∗ each atom A ∈ BP is head of exactly one rule
I Herbrand Base of P is the set BP of ground atoms
I Interpretation is a function I : BP → {0, 1}.
I Model I |= P iff for all r ∈ P∗ I |= r , where I |= A← ϕ iff I(ϕ) ≤ I(A)

I Entailment: for a ground atom p(c)

P |= p(c) iff all models of P satisfy p(c)

I Least model MP of P exists and is least fixed-point of

TP(I)(A) = I(ϕ), for all A← ϕ ∈ P∗

I M can be computed as the limit of

I0 = 0
Ii+1 = TP(Ii) .

LP Query Answering

I Query: is a rule of the form

q(x)← ϕ(x,y)

I If P |= q(c) then c is called an answer to q
I The answer set of q w.r.t. P is defined as

ans(P,q) = {c | P |= q(c)}

I Efficient query answering algorithms exists

Fuzzy LPs Basics

I We consider fuzzy LPs, which extends classical LPs,
where

I Truth space is [0,1]
I Interpretation is a mapping I : BP → [0,1]
I Generalized LP rules are of the form

R(x)← ∃y.f (R1(z1), . . . ,Rk (zk), p1(z′1), . . . , ph(z′h))

I Meaning of rules: “take the truth-values of all Ri (zi), pj (z′j),
combine them using the truth combination function f , and
assign the result to R(x)”

I Facts: ground expressions of the form R(c) : n
I Meaning of facts: “the degree of truth of R(c) is at least n”

I Fuzzy LP: a set of facts (extensional database) and a set of
rules (intentional database). No extensional relation may
occur in the head of a rule

I Rules:

R(x)← ∃y.ϕ(x, y)

1. x are the distinguished variables;
2. s is the score variable, taking values in [0, 1];
3. y are existentially quantified variables, called non-distinguished variables;
4. ϕ(x, y) is f (R(z),p(z′)), where R is a vector of predicates Ri and p is a

vector of fuzzy predicates pj ;
5. z, z′ are tuples of constants in KB or variables in x or y;
6. pj is an nj -ary fuzzy predicate assigning to each nj -ary tuple cj the score

pj (cj) ∈ [0, 1];
7. f is a monotone scoring function f : [0, 1]k+h → [0, 1], which combines the

scores of the h fuzzy predicates pj (cj) with the k scores Ri (ci)

Semantics of fuzzy LPs

I P∗ is constructed as follows (as for the classical case):
1. set P∗ to the set of all ground instantiations of rules in P;
2. replace a fact p(c) in P∗ with the rule p(c)← 1
3. if atom A is not head of any rule in P∗, then add A← 0 to P∗;
4. replace several rules in P∗ having same head

A← ϕ1
A← ϕ2

...
A← ϕn

 with A← ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn .

I Note: in P∗ each atom A ∈ BP is head of exactly one rule
I Herbrand Base of P is the set BP of ground atoms
I Interpretation is a function I : BP → [0, 1].
I Model I |= P iff for all r ∈ P∗ I |= r , where I |= A← ϕ iff I(ϕ) ≤ I(A)

I Note:

I(f (R1(c1), . . . ,Rk (ck), p1(c′1), . . . , ph(c′h))) = f (I(R1(c1)), . . . , I(Rk (ck)), p1(c′1), . . . , ph(c′h)))

Fuzzy LP Query Answering
I Least model MP of P exists and is least fixed-point of

TP (I)(A) = I(ϕ), for all A← ϕ ∈ P∗

I M can be computed as the limit of

I0 = 0
Ii+1 = TP (Ii) .

I Entailment: for a ground expression q(c) : s, s ∈ [0, 1]

P |= q(c) : s iff least model of P satisfies I(q(c)) ≥ s

I We say that s is tight iff s = sup{s′ | P |= q(c) : s′}
I If P |= q(c) : s and s is tight then c : s is called an answer to q
I The answer set of q w.r.t. P is defined as

ans(P, q) = {c : s | P |= q(c) : s, s is tight}

Top-k Retrieval: Given a fuzzy LP P, and a query q, retrieve k answers c : s with
maximal scores and rank them in decreasing order relative to the
score s, denoted

ansk (P, q) = Topk ans(P, q) .

I Fuzzy LPs may be tricky:

A : 0
A ← (A + 1)/2

I In the minimal model the truth of A is 1 (requires infinitely
many TP iterations)!

I There are several ways to avoid this pathological behavior:
I We may consider L = {0, 1

n ,
2
n . . . ,

n−1
n ,1}, n natural

number, e.g. n = 100
I In A← f (B1, . . . ,Bn), f is bounded, i.e. f (x1, . . . , xn) ≤ xi

Example: Soft shopping agent

I I may represent my preferences in Logic Programming with the rules

Pref1(x, p) ← HasPrice(x, p) ∧ LS(10000, 14000)(p)

Pref2(x) ← HasKM(x, k) ∧ LS(13000, 17000)(k)

Buy(x, p) ← 0.7 · Pref1(x, p) + 0.3 · Pref2(x)

ID MODEL PRICE KM
455 MAZDA 3 12500 10000
34 ALFA 156 12000 15000

1812 FORD FOCUS 11000 16000
.
.
.

.

.

.
.
.
.

.

.

.

I Problem: All tuples of the database have a score:

I We cannot compute the score of all tuples, then rank them. Brute force approach not feasible for

very large databases
I Top-k problem: Determine efficiently just the top-k ranked tuples, without evaluating the score of all tuples.

E.g. top-3 tuples

ID PRICE SCORE
1812 11000 0.6
455 12500 0.56
34 12000 0.50

General top-down query procedure for Many-valued
LPs

I Idea: use theory of fixed-point computation of equational systems over truth
space (complete lattice or complete partial order)

I Assign a variable xi to an atom Ai ∈ BP
I Map a rule A← f (A1, . . . ,An) ∈ P∗ into the equation xA = f (xA1 , . . . , xAn)

I A LP P is thus mapped into the equational system
x1 = f1(x11 , . . . , x1a1

)

...
xn = fn(xn1 , . . . , xnan)

I fi is monotone and, thus, the system has least fixed-point, which is the limit of

y0 = 0
yi+1 = f(yi) .

where f = 〈f1, . . . , fn〉 and f(x) = 〈f1(x1), . . . , fn(xn)〉
I The least-fixed point is the least model of P
I Consequence: If top-down procedure exists for equational systems then it works

for fuzzy LPs too!

Procedure Solve(S,Q)
Input: monotonic system S = 〈L,V , f〉, where Q ⊆ V is the set of query variables;
Output: A set B ⊆ V , with Q ⊆ B such that the mapping v equals lfp(f) on B.

1. A : = Q, dg : = Q, in : = ∅, for all x ∈ V do v(x) = 0, exp(x) = 0
2. while A 6= ∅ do
3. select xi ∈ A, A : = A \ {xi}, dg : = dg ∪ s(xi)
4. r : = fi (v(xi1), ..., v(xiai

))

5. if r � v(xi) then v(xi) : = r , A : = A ∪ (p(xi) ∩ dg) fi
6. if not exp(xi) then exp(xi) = 1, A : = A ∪ (s(xi) \ in), in : = in ∪ s(xi) fi

od

For q(x)← φ ∈ P, with s(q) we denote the set of sons of q w.r.t. r , i.e. the
set of intentional predicate symbols occurring in φ. With p(q) we denote the
set of parents of q, i.e. the set p(q) = {pi : q ∈ s(pi , r)} (the set of predicate
symbols directly depending on q).

I The top-down procedure can be extended to
I fuzzy Normal Logic Programs (Logic programs with

non-monotone negation)
I Many-valued Normal Logic Programs under Any-world

Assumption
I Logic Programs, without requiring the grounding of the

program
I Other approaches for top-down methods for monotone

fuzzy LPs:
I Magics sets like methods: yet to investigate ...
I There are also extensions to Fuzzy Disjunctive Logic

Programs with or without default negation

Top-k retrieval in LPs

I If the database contains a huge amount of facts, a brute
force approach fails:

I one cannot anymore compute the score of all tuples, rank
all of them and only then return the top-k

I Better solutions exists for restricted fuzzy LP languages:
Datalog + restriction on the score combination functions
appearing in the body

Basic Idea

I We do not compute all answers, but determine answers
incrementally

I At each step i , from the tuples seen so far in the database,
we compute a threshold δ

I The threshold δ has the property that any successively
retrieved answer will have a score s ≤ δ

I Therefore, we can stop as soon as we have gathered k
answers above δ, because any successively computed
answer will have a score below δ

Example

Logic Program P is

q(x)← p(x)
p(x)← min(r1(x , y), r2(y , z))

RecordID r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75
4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55
...

...
...

...
...

...
...

What is
Top1(P, q) = Top1{〈c, s〉 | P |= q(c, s)} ?

q(x)← p(x)
p(x)← min(r1(x, y), r2(y, z))

RecordID r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75 ←

→ 4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Action: STOP, top-1 tuple score is equal or above threshold 0.75 = max(min(1.0, 0.75),min(0.7, 0.95))

Queue δ
− 0.75

Predicate Answers
q 〈e, 0.75〉〈l, 0.7〉
p 〈e, 0.75〉, 〈l, 0.7〉

Top1(P, q) = {〈e, 0.75〉}

Note: no further answer will have score above threshold δ

Procedure TopAnswers(L,K, q, k)
Input: Truth space L, KBK = 〈F, P〉, query relation q, k ≥ 1
Output: Mapping rankedList such that rankedList(q) contains top-k answers of q
Init: δ = 1, for all predicates p in P do

if p intensional then rankedList(p) = ∅, Q(p) := ∅ fi
if p extensional then rankedList(p) = Tp fi

endfor
1. loop
2. if A = ∅ then A := {q}, dg := {q}, in := ∅, rL′ := rankedList, initialise all pointers ptr r

i to 0
3. for all intensional predicates p do exp(p) = false endfor

fi
4. select p ∈ A, A := A \ {p}, dg := dg ∪ s(p)
5. 〈t, s〉 := getNextTuple(p)
6. if 〈t, s〉 6= null then rankedList(p) := rankedList(p) ∪ {〈t, s〉}, A := A ∪ (p(p) ∩ dg) fi
7. if not exp(p) then exp(p) = true, A := A ∪ (s(p) \ in), in := in ∪ s(p) fi
8. Update threshold δ
9. until (rankedList(q) does contain k top-ranked tuples with score above query rule threshold)

or ((rL′ = rankedList) and A = ∅)
10. return top-k ranked tuples in rankedList(q)

Procedure getNextTuple(p)
Input: intensional relation symbol p. Consider set of rulesR = {r | r : p(x)← f (A1, . . . , An) ∈ P}
Output: Next instance of p together with the score
Init: Let pi be the relation symbol occurring in Ai
1. if Q(p) 6= ∅ then

〈t, s〉 := getTop(Q(p)), remove 〈t, s〉 from Q(p), return {〈t, s〉} fi
loop

2. for all r ∈ R do
3. Generate the set T of all new valid join tuples t for rule r ,

using tuples in rankedList(pi) and pointers prt r
i

4. for all t ∈ T do
5. s := compute the score of p(t) using f ;
6. if neither 〈t, s′〉 ∈ rankedList(p) nor 〈t, s′〉 ∈ Q(p) with s � s′ then

insert 〈t, s〉 into Q(p) fi
endfor

endfor
until Q(p) 6= ∅ or no new valid join tuple can be generated

7. if Q(p) 6= ∅ then 〈t, s〉 := getTop(Q(p)), remove 〈t, s〉 from Q(p), return 〈t, s〉
else return null fi

Threshold computation
For an intentional predicate p, head of a rule r : p(x)← f (p1, p2, . . . , pn).

I consider a threshold variable δp

I with r.t⊥pi
(r.t>pi

) we denote the last tuple seen (the top ranked one) in rankedList(p, r)

I we define

p>i = max(δpi , r.t>pi
.score)

p⊥i = δ
pi

I if pi is an extensional predicate, we define

p>i = r.t>pi
.score

p⊥i = r.t⊥pi
.score

I for rule r we consider the equation δ(r)

δ
p = max(f (p⊥1 , p>2 , . . . , p>n), f (p>1 , p⊥2 , . . . , p>n), . . . , f (p>, p>, . . . , p⊥n))

I consider the set of equations of all equations involving intentional predicates, i.e.

∆ =
⋃

r∈P

{δ(r)} .

I for a query q(x), the threshold δ of the TopAnswers algorithm is defined as to be

δ = δ̄
q
,

where δ̄q is the solution to δq in the minimal solution ∆̄ of the set of equations ∆.
I note that δ̄q , can be computed iteratively as least fixed-point

Complexity

I The problem of determining the truth of ground q in least model
of P is

O(|P∗|h(a + p))

where h is the cardinality of the truth space, a is max arity of
functions, p is max numbers of predecessors of an atom

I The problem of determining top-k answers to q is

O(|P∗|h(a log |H|+ |P|h(ā + |Dq |)))

I H is Herbrand universe
I Dq is set of intentional relation symbols that depend on q
I ā = max(a, r), where r is the number of rules

Annotation domains & RIF

I For RIF, it it is like for RDFS
I The complexity is inherited from their fuzzy variants if

lattice is finite, else conjectured undecidable in general

Some open issues for Fuzzy/Annotated SWLs
I Fuzzyfication of these languages is an emerging demand along several directions such as

1. Fuzzyfying predicates
2. Several t-norms
3. Allowing modifiers
4. Explicit representation of membership functions
5. Fuzzy quantifiers
6. Fuzzy spatial, fuzzy time

7. Standardisation of Syntax & Semantics

I Fuzzy RDFS & SPARQL.
I AnQL (Annotated RDFS and SPARQL) is the most advanced framework so far
I Can easily be prototyped

I But, no efficient system exists yet

I Fuzzy OWL 2
I Extends OWL 2 with many “fuzzy features”
I Reasoning procedures very tricky, decidability and computational complexity not simple to figure out
I Some reasoners exists, fuzzyDL, Fire, DeLorean
I Expandable Fuzzy OWL 2 standard encoding proposed and Protege plug-in available
I top-k retrieval algorithm known only for OWL QL and OWL RL

I integration of RIF and OWL 2 relatively unexplored

I Fuzzy RIF
I Fuzzy RIF can be obtained from the various Fuzzy LPs framework developed so far
I No system exists yet supporting Fuzzy RIF

I More problematic for large scale databases, no efficient support for top-k retrieval

	Main Talk
	Basics on Semantic Web Languages
	RDFS, OWL, RIF

	The Quest for Fuzzy SWLs
	Fuzzy Logic Basics
	Fuzzy RDFS Basics
	Crisp RDFS
	Fuzzy RDFS

	Fuzzy OWL Basics
	Crisp OWL
	Fuzzy OWL

	Fuzzy RIF Basics
	Crisp RIF
	Fuzzy RIF

	Open issues

