
fuzzyDL: An Expressive Fuzzy Description Logic Reasoner

Fernando Bobillo and Umberto Straccia

Abstract— In this paper we present fuzzyDL, an expressive
fuzzy Description Logic reasoner. We present its salient features,
including some novel concept constructs and queries, and
examples of use cases: matchmaking and fuzzy control.

I. INTRODUCTION

Description Logics (DLs) [2] are a logical reconstruction
of the so-called frame-based knowledge representation lan-
guages, with the aim of providing a simple well-established
Tarski-style declarative semantics to capture the meaning
of the most popular features of structured representation
of knowledge. Nowadays, DLs have gained even more
popularity due to their application in the context of the
Semantic Web [3]. Indeed, the current standard language
for specifying ontologies is the Web Ontology Language
(OWL) [19], which comprises three sublanguages of increas-
ing expressive power: OWL Lite, OWL DL and OWL Full.
The logical counterpart of OWL Lite and OWL DL are the
DLs SHIF(D) and SHOIN (D), respectively [13].

Fuzzy DLs have been proposed as an extension to clas-
sical DLs with the aim to deal with fuzzy/vague/imprecise
concepts. Since the first work of J. Yen in 1991 [29], an
important number of works can be found in the literature.
For a good survey on fuzzy DLs we refer the reader to [16].

This paper focuses on presenting the fuzzyDL system, an
expressive fuzzy Description Logic reasoner. We present its
salient features and some of its applications.

In the remainder, we proceed as follows. Section II reviews
some preliminaries on fuzzy set theory and fuzzy logic. Sec-
tion III presents the fuzzy DL which is currently supported
by fuzzyDL. Next, Section IV describes its more relevant
features, while Section V presents two use cases (matchmak-
ing and fuzzy control). Finally, Section VI overviews some
related work and presents some conclusions as well as some
ideas for future work.

II. FUZZY SET THEORY AND FUZZY LOGIC

Fuzzy set theory and fuzzy logic were proposed by
Zadeh [30] to manage imprecise and vague knowledge.
While in classical set theory elements either belong to a
set or not, in fuzzy set theory elements can belong to some
degree. More formally, let X be a set of elements called
the reference set. A fuzzy subset A of X , is defined by a
membership function µA(x), or simply A(x), which assigns
any x ∈ X to a value in the real interval between 0 and 1.

Fernando Bobillo is with the Department of Computer Science
and Artificial Intelligence, University of Granada, Spain (email: fbo-
billo@decsai.ugr.es).

Umberto Straccia is with the Istituto di Scienza e Tecnologie
dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy (email:
straccia@isti.cnr.it).

As in the classical case, 0 means no-membership and 1 full
membership, but now a value between 0 and 1 represents the
extent to which x can be considered as an element of X .

All crisp set operations are extended to fuzzy sets. The in-
tersection, union, complement and implication set operations
are performed by a t-norm function ⊗, a t-conorm function
⊕, a negation function 	 and an implication function ⇒,
respectively. For a definition of these functions we refer the
reader to [14]. Here, we just summarize the fuzzy operators
which will be treated throughout this paper:

Łukasiewicz negation 	Łα = 1− α
Gödel t-norm α⊗G β = min{α, β}

Łukasiewicz t-norm α⊗Ł β = max{α + β − 1, 0}
Gödel t-conorm α⊕G β = max{α, β}

Łukasiewicz t-conorm α⊕Ł β = min{α + β, 1}

Gödel implication α ⇒G β =


1, if α 6 β
β, if α > β

Łukasiewicz implication α ⇒Ł β = min{1, 1− α + β}
Kleene-Dienes implication α ⇒Z β = max{1− α, β}

where α, β ∈ [0, 1]. Fuzzy implications can be used to define
families of fuzzy operators. We recall here the fuzzy families
that we will consider in this paper:

• Zadeh logic uses Łukasiewicz negation, Gödel t-norm,
Gödel t-conorm and Kleene-Dienes (KD) implication.

• Łukasiewicz logic uses Łukasiewicz negation,
Łukasiewicz t-norm, Łukasiewicz t-conorm and
Łukasiewicz implication.

One of the most important features of fuzzy logic is
its ability to perform approximate reasoning,which involves
inference rules with premises, consequences or both of them
containing fuzzy propositions. A very popular formalism, due
to their practical success, are fuzzy rule-based systems.

A fuzzy IF-THEN system consists of a rule base (a set
of IF-THEN rules) and a reasoning algorithm performing
an inference mechanism such as Rete [7]. In general, the
input of the system is the current value for the input variable
and the output is a fuzzy set, which can be defuzzified into
a single value. In a fuzzy IF-THEN rule, its antecedents,
consequences or both are fuzzy. Fuzzy IF-THEN rules are
fired to a degree which is a function of the degree of match
between their antecedent and the input. The deduction rule is
Generalized Modus Ponens. Roughly speaking, given a rule
“IF A THEN B”, where A and B are fuzzy propositions, it
is possible from a premise “A′” which matches A to some
degree, to deduce “B′”, which is similar to B.

One of the most popular IF-THEN systems is the Mamdani
model [18]. In a Mamdani model, fuzzy rules have the form

IF X1 IS A1AND . . . AND Xn IS An THEN Y IS B , (1)

where Ai and B are linguistic values defined by fuzzy sets
on universes of discourse Xi and Y respectively, i = 1, . . . n.

For every clause in the antecedent of the rule, the matching
degree between the current value of the variable and the
linguistic label in the rule is computed (typically, using the
minimum or another t-conorm). If there exist several clauses,
they are aggregated into a firing degree, using a fuzzy logic
operator (typically, the maximum). Then, this firing degree
is used for modifying the consequent of the rule using some
function (typically the minimum).

Rules are fired using some inference algorithm. The
computed consequences related to the same variable are
aggregated (typically, using the maximum). Then, the output
variables can be defuzzified. Some examples of defuzzifi-
cation methods are the LOM (largest of maxima), SOM
(smallest of maxima) and MOM (middle of maxima). More
precisely, let B denote the fuzzy set to be defuzzified and
let x be an arbitrary element of the universe. Then for all x:

• xLOM is the LOM iff µB(xLOM) > µB(x) and, if
µB(xLOM) = µB(x) then xLOM > x.

• xSOM is the SOM iff µB(xSOM) > µB(x) and, if
µB(xSOM) = µB(x) then xSOM < x.

• xMOM is the MOM iff xMOM = (xLOM + xSOM)/2.

III. FUZZY DESCRIPTION LOGICS

We next present the fuzzy DL which is currently behind
the fuzzyDL reasoner, an extension of [23], [24], [25], [26].
However, instead of dealing with the infinite set of truth
degrees in [0, 1] as usual, fuzzyDL restricts to a discretized set
[0, 1]D = {0, 1

n , . . . , n−1
n , 1} for an appropriate big natural

n such that there is a machine representable 0 < ε < 1
n .

Assuming a finite set of truth degrees is unavoidable since
fuzzyDL relies on numerical calculus (Mixed Integer Linear
Programming or MILP [21]) using fixed precision, due to
the physical limitations of computers1.

A. Syntax

The main ingredients of DLs are concepts, which denote
unary predicates, and roles, which denote binary predicates.
Then there are connectives which allow to construct complex
concepts. For instance, if we use the concept Human to
denote the set of humans, and the concept Male to denote
the set of male objects, the complex concept (conjunction)
Human uMale will denote the set of male humans. On
the other hand, if hasChild denotes a role then the con-
cept Human u ∃hasChild.Male will denote the the set of
humans having a male child.
fuzzyDL supports concrete data types such as reals, integers,
strings and allows the definition of concepts with explicit
representation of fuzzy membership functions. This is im-
plemented by relying on so-called fuzzy data type theory. A
fuzzy data type theory D= 〈∆D, ·D〉 is such that ·D assigns
to every n-ary data type predicate d an n-ary fuzzy relation
over ∆D [17]. For instance, the predicate 618 may be a

1It is well known that, e.g., we may loose associativity for very small
numbers, however these cases are very rare in practice.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Trapezoidal function; (b) Triangular function; (c) L-function;
(d) R-function; (e) Crisp interval; (f) Linear function.

unary crisp predicate over the natural numbers denoting the
set of integers smaller or equal to 18. Concerning non-crisp
fuzzy domain predicates, we recall that in fuzzy set theory
and practice, there are many functions for specifying fuzzy
set membership degrees. However, the trapezoidal (Fig. 1
(a)), the triangular (Fig. 1 (b)), the L-function (left-shoulder
function, Fig. 1 (c)), and the R-function (right-shoulder
function, Fig. 1 (d)) are simple, but most frequently used
to specify membership degrees. For backwards compatibil-
ity, fuzzyDL also allows crisp intervals (Fig. 1 (e)). These
functions are defined over the set of non-negative rationals
Q+∪{0} For instance, we may define Y oung : N → [0, 1]D
to be a fuzzy concrete predicate over the natural numbers
denoting the degree of youngness of a person’s age, as
Y oung(x) = L(10, 30).

fuzzyDL allows fuzzy modifiers, such as very, more or
less and slightly, which apply to fuzzy sets to change

their membership function. Formally, a modifier is a function
fm : [0, 1]D → [0, 1]D. We will allow modifiers defined in
terms of linear hedges (Figure 1 (f)) and triangular func-
tions (Figure 1 (d)). For instance, very(x) = linear(0.8).
Modifiers have also been considered in [28], [12].

fuzzyDL is based on the fuzzy DL SHIF(D), i.e., SHIF
with concrete data types, which we define next. Let A, Ra,
Rc, I, Ic and M be non-empty finite and pair-wise disjoint
sets of concepts names (denoted A), abstract roles names
(denoted R), concrete roles names (denoted T), abstract
individual names (denoted x, y), concrete individual names
(denoted v) and modifiers (denoted m). Concepts may be
seen as unary predicates, while roles may be seen as binary
predicates. Ra also contains a non-empty subset Fa of
abstract feature names (denoted r), while Rc contains a
non-empty subset Fc of concrete feature names (denoted t).
Features are functional roles. The syntax of fuzzy SHIF
concepts (denoted C, D) is as follows:

C, D := > | ⊥ | A | C uD | C tD | ¬C | ∀R.C | ∃R.C

Now, Fuzzy SHIF(D) extends SHIF with concrete
data types, i.e., it has the additional concept constructs:

C, D := ∀T.d | ∃T.d | DR
d := crisp(a, b) | L(a, b) | R(a, b) |

triangular(a, b, c) | trapezoidal(a, b, c, d)
DR := > t val | 6 t val | = t val

where val is an integer, a real or a string depending
on the range of the concrete feature t. For instance, the
expression Human u (6 hasAge 18) will denote the set of
humans, which have an age less or equal than 18, while
Human u ∃hasAge.L(10, 30) will denote the set of young
humans (their age is L(10, 30)).

Finally, fuzzyDL extends SHIF(D) as follows:

C, D := C uG D | C uŁ D | C tG D | C tŁ D |
C → D | C →G D | C →Ł D | m(C) |
n C | w1C1 + · · ·+ wkCk | C[> n] | C[6 n]

m := linear(a) | triangular(a, b, c)

where n ∈ [0, 1]D, wi ∈ [0, 1]D,
∑k

i=1 wi = 1. For instance,
the concept m(C) applies the modifier m to the concept C
and, thus, e.g., Human u ∃hasAge.linear(0.8)(L(10, 30))
denotes the set of very young humans.

A fuzzyDL fuzzy knowledge base (KB) K = 〈A, T ,R〉
consists of a fuzzy ABox A, a fuzzy TBox T and a fuzzy
RBox R.

A fuzzy ABox A consists of a finite set of fuzzy concept
and fuzzy role assertion axioms of the form 〈x :C, α〉 and
〈(x, y) :R,α〉, where α ∈ (0, 1]D. Informally, from a seman-
tical point of view, 〈τ, α〉 constrains the membership degree
of τ to be at least α. Hence, 〈jim :Y oungPerson, 0.2〉 says
that jim is a Y oungPerson with degree at least 0.2, while
〈(jim, tom) :hasFriend, 1〉, states that jim and tom are
friends. If the α is omitted, 1 is assumed.

A fuzzy TBox T is a finite set of fuzzy General Concept
Inclusion axioms (GCIs) 〈C v D,α〉, where α ∈ (0, 1]D
and C,D are concepts. Informally, 〈C v D,α〉 states that all
instances of concept C are instances of concept D to degree
α, that is, the subsumption degree between C and D is at
least α. For instance, 〈Elephant v Animal, 1〉 states that
the class of elephants is a subclass of the class of animals. We
write C = D as a shorthand of the two axioms 〈C v D, 1〉
and 〈D v C, 1〉. For instance, Minor = Person u (6
hasAge18) defines a person, whose age is less or equal to
18 (hasAge is a concrete feature), i.e., a minor. If the truth
value α is omitted then the value 1 is assumed.

fuzzyDL also allows to write v⇒ in order to specify the
particular implication function to be used in the semantics of
the GCI (currently, Kleene-Dienes, Łukasiewicz or Gödel).

Some important particular cases of GCIs are:
• Domain axioms, stating that the domain of role R is the

concept C, i.e., 〈∃R.> v C, 1〉.
• Range axioms, stating that the range of role R is the

concept C, i.e., 〈> v ∀R.C, 1〉.
• Disjointness axioms, stating that concepts C1 . . . Ck are

disjoint, i.e., ∀i,j∈{1,...,k},i<j , 〈Ci u Cj v ⊥, 1〉
A fuzzy RBox R is a finite set of role axioms of the form:
• (fun R), stating that a role R is functional, i.e., R is a

feature.
• (trans R), stating that a role R is transitive.
• R1 v R2, meaning that role R2 subsumes role R1.
• (inv R1 R2), stating that role R2 is the inverse of R1

(and vice versa).

A simple role is a role which is neither transitive nor has a
transitive subroles. An important restriction is that functional
needs to be simple.

B. Semantics

The main idea is that concepts and roles are interpreted
as fuzzy subsets of an interpretation’s domain. Therefore,
axioms, rather than being “classical” evaluated (being either
true or false), they are “many-valued” evaluated in [0, 1]D.

A fuzzy interpretation I = (∆I , ·I) relative to a fuzzy data
type theory D= 〈∆D, · 〉D consists of a nonempty set ∆I

(the domain), disjoint from ∆D, and of a fuzzy interpretation
function ·I that coincides with ·D on every data value, data
type, and fuzzy data type predicate, and it assigns:

• to each abstract concept C a function CI : ∆I →
[0, 1]D;

• to each abstract role R a function RI : ∆I × ∆I →
[0, 1]D;

• to each abstract feature r a partial function rI : ∆I ×
∆I → [0, 1]D such that for all x ∈ ∆I there is an
unique y ∈ ∆I on which rI(x, y) is defined;

• to each concrete role T a function RI : ∆I × ∆D →
[0, 1]D;

• to each concrete feature t a partial function tI : ∆I ×
∆D → [0, 1]D such that for all x ∈ ∆I there is an
unique v ∈ ∆D on which tI(x, v) is defined;

• to each modifier m the modifier function fm : [0, 1]D →
[0, 1]D;

• to each abstract individual x an element in ∆I ;
• to each concrete individual v an element in ∆D.

The mapping ·I is extended to roles and complex concepts
as specified in Table I, while the mapping ·I is extended to
the other constructs as specified in Table II.

The notion of satisfaction of a fuzzy axiom E by a fuzzy
interpretation I, denoted I |= E, is defined as follows:

• I |= 〈τ > α〉 iff τI > α,
• I |= (trans R) iff ∀x,y∈∆I , RI(x, y) > supz∈∆I

RI(x, z)⊗RI(z, y),
• I |= R1 v R2 iff ∀x, y ∈ ∆I .R1

I(x, y) 6 R2
I(x, y),

• I |= (inv R1 R2) iff ∀x, y ∈ ∆I .R1
I(x, y) =

R2
I(y, x).

We say that concept C is satisfiable iff there is an inter-
pretation I and an individual x ∈ ∆I such that CI(x) > 0.

For a set of axioms E , we say that I satisfies E iff I
satisfies each element in E . We say that I is a model of E
(resp. E) iff I |= E (resp. I |= E). I satisfies (is a model
of) a fuzzy KB K = 〈A, T ,R〉, denoted I |= K, iff I is a
model of each component A, T and R, respectively.

An axiom E is a logical consequence of a knowledge base
K, denoted K |= E iff every model of K satisfies E.

Given K and a fuzzy axiom τ of the forms 〈x :C, α〉,
〈(x, y) :R,α〉 or 〈C v D,α〉, it is of interest to compute τ ’s
best lower degree value bound. The greatest lower bound of
τ w.r.t. K (denoted glb(K, τ)) is glb(K, τ) = sup{n | K |=
〈τ > n〉}, where sup ∅ = 0. Determining the glb is called
the Best Degree Bound (BDB) problem.

⊥I(x) = 0 (m(C))I(x) = fm(CI(x))
>I(x) = 1 (∀R.C)I(x) = infy∈∆I RI(x, y) ⇒ CI(y)

(¬C)I(x) = 	CI(x) (∃R.C)I(x) = supy∈∆I RI(x, y)⊗ CI(y)
(C uD)I(x) = CI(x)⊗DI(x) (∀T.d)I(x) = infy∈∆D

T I(x, v) ⇒ dI(y)
(C uG D)I(x) = CI(x)⊗G DI(x) (∃T.d)I(x) = supy∈∆D

T I(x, v)⊗ dI(y)
(C uŁ D)I(x) = CI(x)⊗Ł DI(x) (n C)I(x) = n CI(x)
(C tD)I(x) = CI(x)⊕DI(x) (w1C1 + · · ·+ wkCk)I(x) = w1C1

I(x) + · · ·+ wkCk
I(x)

(C tG D)I(x) = CI(x)⊕G DI(x) (C[> n])I(x) =
{

CI(x), if CI(x) > n
0, otherwise

(C tŁ D)I(x) = CI(x)⊕Ł DI(x) (C[6 n])I(x) =
{

CI(x), if CI(x) 6 n
0, otherwise

(C → D)I(x) = CI(x) ⇒ DI(x) (> t val)I(x) = supc∈∆D
t(x, v)⊗ (v > val)

(C →G D)I(x) = CI(x) ⇒G DI(x) (6 t val)I(x) = supc∈∆D
t(x, v)⊗ (v 6 val)

(C →KD D)I(x) = CI(x) ⇒KD DI(x) (= t val)I(x) = supc∈∆D
t(x, v)⊗ (v = val)

(C →Ł D)I(x) = CI(x) ⇒L DI(x)

TABLE I
SEMANTICS OF THE COMPLEX FUZZY CONCEPTS.

(x :C)I = CI(xI)
((x, y) :R)I = RI(xI , yI)
(C v D)I = infx∈∆I CI(x) ⇒ DI(x)

(C vG D)I = infx∈∆I CI(x) ⇒G DI(x)
(C vŁ D)I = infx∈∆I CI(x) ⇒Ł DI(x)

(C vKD D)I = infx∈∆I CI(x) ⇒KD DI(x)

TABLE II
SEMANTICS OF OTHER CONSTRUCTS.

Finally, another similar problem is to compute the best
satisfiability bound of a concept C and amounts to determine
glb(K, C) = supI supx∈∆I{CI(x) | I |= K}. Essentially,
among all models I of the KB, we are determining the
maximal degree of truth that the concept C may have over
all individuals x ∈ ∆I .

IV. THE fuzzyDL REASONER

fuzzyDL is a DL reasoner supporting fuzzy logic rea-
soning, publicly available at http://gaia.isti.cnr.
it/˜straccia/software/fuzzyDL. It has been de-
veloped in Java, using the parser generator JavaCC2 and the
MILP-solver Cbc3. The reasoning algorithm uses a com-
bination of a tableaux algorithm and a MILP optimization
problem. A detailed description of the reasoning algorithm
cannot fit into this paper, but it can be partially found in [24],
[26], [27]. In the rest of this section, we describe some of
the most interesting features of the reasoner.

a) Expressivity of the representation language: fuzzyDL
extends the classical DL SHIF(D) to the fuzzy case. But
in addition to the constructs of SHIF(D) it allows some

2https://javacc.dev.java.net
3http://www.coin-or.org/projects/Cbc.xml

new concepts constructs, already introduced in Section III.
We recall them here since they are not supported by other
fuzzy DL reasoners:

• New concept constructs: weighted concepts (n C),
weighted sum concepts (w1C1 + · · · + wkCk) and
threshold concepts [6] (C[> n]) and (C[6 n]).

• Explicit definitions of fuzzy concepts are allowed, by
means of crisp intervals, trapezoidal, triangular, left-
shoulder and right-shoulder membership functions.

• Concept modifiers can be represented using linear
hedges and triangular functions.

• Concrete features or datatypes, which can have a value
with is an integer, a real or a string.

Another interesting feature is that the degrees of the fuzzy
axioms may not only be numerical constants, but also vari-
ables, thus being able to deal with unknown degrees of truth.

b) Fuzzy operators: The user can specify three seman-
tics: Zadeh, Łukasiewicz and classical logics. Classical logic
makes the reasoner backwards compatible, whereas Zadeh
semantics is included for compatibility with most of the
papers about fuzzy DLs. By default, the operators will be
interpreted according to the semantics chosen by the user,
but the language allows to combine arbitrarily the supported

fuzzy operators. Whenever a fuzzy conjunction, a disjunction
or implication is used, the user can specify its particular
semantics.

The following restriction should be remarked. If Gödel
implication ⇒G appears in the fuzzy KB, then the reasoner
restricts the calculus to finite models. In general, Gödel logic
does not have the witnessed model property, i.e., there can
exist fuzzy KBs which have an infinite model, but they do not
have a witnessed model (see [11] for an example). However,
due to the limited precision of computers, we will deal with a
finite number of truth values, and in Gödel logic over a fixed
finite subset of truth values all models (finite or infinite) are
witnessed [11].

c) Constraints: The possible values of the variables in
the KB may be restricted by specifying linear inequations, as
well as by restricting variables to be binary or free. Clearly,
the range of the variables can be defined by means of a pair
of linear inequations. As a consequence, it is possible to
represent (and to solve) MILP problems using fuzzyDL. We
allow the following constraints, with ./∈ {>,6,=}:

Constraint Semantics
(linear inequation) a1var1 + · · ·+ ak ∗ vark ./ n

(binary var) var ∈ {0, 1}
(free var) var ∈ (−∞,∞)

For instance, we may encode that “Tim is taller than Tom”
by specifying 〈tim :Tall, x1〉, 〈tom :¬Tall, x2〉 with the
constraint x1 + x2 = 1.

d) Query language: fuzzyDL allows to compute several
different types of queries. It does not only allow typical
reasoning tasks such as the BDB, concept satisfiability and
subsumption problems, but it also allows to optimize vari-
ables and to perform defuzzifications. The concrete syntax
for the queries is the following:

Query Semantics
(max-instance? a C) sup{n | K |= 〈a : C, n〉}
(min-instance? a C) inf{n | K |= 〈a : C, n〉}

(max-related? a b R) sup{n | K〈(a, b) : R,n〉}
(min-related? a b R) inf{n | K |= 〈(a, b) : R,n〉}

(max-subs? C D) sup{n | K |= 〈D v C, n〉}
(min-subs? C D) inf{n | K |= 〈D v C, n〉}

(g-max-subs? C D) sup{n | K |= 〈D vG C, n〉}
(g-min-subs? C D) inf{n | K |= 〈D vG C, n〉}
(l-max-subs? C D) sup{n | K |= 〈D vŁ C, n〉}
(l-min-subs? C D) inf{n | K |= 〈D vŁ C, n〉}

(kd-max-subs? C D) sup{n | K |= 〈D vKD C, n〉}
(kd-min-subs? C D) inf{n | K |= 〈D vKD C, n〉}

(max-sat? C [a]) supI supa∈∆I CI(a)
(min-sat? C [a]) infI supa∈∆I CI(a)

(max-var? var) sup{var | K is consistent}
(min-var? var) inf{var | K is consistent}

(defuzzify-lom? C a t) defuzzify t using LOM
(defuzzify-som? C a t) defuzzify t using SOM

(defuzzify-mom? C a t) defuzzify t using MOM

It is worth to note that in concept satisfiability queries
(max-sat? and min-sat?) it is possible the use an individual

a instead of an arbitrary one. This will be used, for example,
in the computation of the defuzzification methods, which will
be explained in Section V-B together with an example.

e) Output: In most of the applications, the user is not
only interested in the answer of the query, but also in the
fuzzy model which satisfies it. However, not all elements
of the model are relevant to the user, specially if he is
working with large fuzzy KBs. fuzzyDL provides several
statements which allow the user to restrict the elements of the
fuzzy model for which the value will be shown. The current
available statements allow to show:

• the value of the fillers of the concrete roles R1 . . . Rn

for every individual,
• the value of the fillers of the concrete roles R1 . . . Rn

for a particular individual a,
• the value of the variables x1 . . . xn,
• the value of the instances of the atomic concepts

A1 . . . An,
• the membership degree of the individuals a1 . . . an to

any atomic concept,
• the language of the KB, ranging from ALC to
SHIF(D).
f) Import of OWL ontologies: At this moment, there

does not exist an editor allowing to create fuzzy KBs in
fuzzyDL. Up to now, the user needs to create a text file using
the syntax of the language.

In order to make the representation of fuzzy KBs easier,
fuzzyDL also allows the possibility of importing OWL Lite
ontologies. These (crisp) ontologies are saved into a text file
which the user can edit and extend, for example adding
membership degrees to the fuzzy axioms or specifying a
particular fuzzy operator for a complex concept.

V. SOME EXAMPLES OF USE CASES

A. Matchmaking

Assume, that a car seller sells a sedan car. A buyer is looking
for a second hand passenger car. Both the buyer as well as the
seller have preferences (restrictions). Our aim is to find the
best agreement. The preferences are as follows. Concerning
the buyer:

1) He does not want to pay more than 26000 euro (buyer
reservation value).

2) If there is an alarm system in the car then he is
completely satisfied with paying no more than 22300
euro, but he can go up to 22750 euro to a lesser degree
of satisfaction.

3) He wants a driver insurance and either a theft insurance
or a fire insurance.

4) He wants air conditioning and the external colour
should be either black or grey.

5) Preferably the price is no more than 22000 euro, but
he can go up to 24000 euro to a lesser degree of
satisfaction.

6) The kilometer warranty is preferrably at least 175000,
but he may go down to 150000 to a lesser degree of
satisfaction.

7) The weights of the preferences 2-6 are, (0.1, 0.2, 0.1,
0.2, 0.4). The higher the value the more important is
the preference.

Concerning the seller:
1) He wants to sell no less than 22000 euro (seller

reservation value)
2) If there is an navigator pack system in the car then he

is completely satisfied with paying no less than 22750
euro, but he can go down to 22500 euro to a lesser
degree of satisfaction.

3) Preferably the buyer buys the Insurance Plus package.
4) The kilometer warranty is preferrably at most 100000,

but he may go up to 125000 to a lesser degree of
satisfaction.

5) The monthly warranty is preferrably at most 60, but
he may go up to 72 to a lesser degree of satisfaction.

6) If the color is black then the car has air conditioning.
7) The weights of the preferences 2-6 are, (0.3, 0.1, 0.3,

0.1, 0.2). The higher the value the more important is
the preference.

We have also some background theory about the domain:
1) A sedan is a passenger car.
2) A satellite alarm system is an alarm system.
3) The navigator pack is a satellite alarm system with a

GPS system.
4) The Insurance Plus package is a driver insurance

together with a theft insurance.
5) The car colours are black or grey.

Now, the background theory can be encoded as:

Sedan v PassengerCar
SatelliteAlarm v AlarmSystem
NavigatorPack = SatelliteAlarm uGPS system
InsuranceP lus = DriverInsurance u TheftInsurance
> v ExColorBlack t ExColorGray
ExColorBlack u ExColorGray v⊥
(fun HasAlarmSystem)
(fun HasAirConditioning)
(fun HasExColor)
(fun HasNavigator)
(fun HasMWarranty)
(fun HasPrice)
(fun HasKMWarranty)

The buyer’s preferences can be encoded as follows:
1) B = (PassengerCar u (6 HasPrice 26000))
2) B1 = ((∃HasAlarmSystem.AlarmSystem) → (∃Has

Price.L(22300, 22750)))
3) B2 = ((∃HasInsurance.DriverInsurance) u

((∃HasInsurance.TheftInsurance) t
(∃HasInsurance.F ireInsurance)))

4) B3 = ((∃HasAirConditioning.Airconditioning) u
(∃HasExColor.(ExColorBlack t ExColorGray)))

5) B4 = (∃HasPrice.L(22000, 24000))
6) B5 = (∃HasKMWarranty.R(15000, 175000))
7) Buy = (B u ((0.1B1) + (0.2B2) + (0.1B3) + (0.2B4) +

(0.4B5)))

Please note that the concept Buy collects all the buyer’s
preferences together in such a way that the higher is the
maximal degree of satisfiability of Buy (i.e., glb(K, Buy)),
the more the buyer is satisfied.

The seller’s preferences can be encoded as follows:
1) S = (Sedan u (> HasPrice 22000))
2) S1 = ((∃HasNavigator.NavigatorPack) → (∃Has

Price.R(22500, 22750))))
3) S2 = (∃HasInsurance.InsuranceP lus)
4) S3 = (∃HasKMWarranty.L(100000, 125000))
5) S4 = (∃HasMWarranty.L(60, 72))
6) S5 = ((∃HasExColor.ExColorBlack) → (∃Has

AirConditioning.AirConditioning))
7) Sell = (S u ((0.3S1) + (0.1S2) + (0.3S3) + (0.1S4) +

(0.2S5)))

Similarly to the buyer case, the concept Sell collects
all the seller’s preferences together in such a way that
the higher is the maximal degree of satisfiability of Sell
(i.e., glb(K, Sell)), the more the seller is satisfied.

Now, it is clear that the best agreement among the buyer
and the seller is determined by the maximal degree of
satisfiability of the conjunction Buy u Sell, i.e., we have
to determine glb(K, Buy u Sell). In particular, we ask
the fuzzyDL solver to answer to the query (by relying on
Łukasiewicz conjunction, we have the guarantee that the
solution is Pareto optimal [20])

(show-fillers HasPrice HasKMWarranty HasMWarranty)
(max-sat? (Buy uŁ Sell))

which determines glb(K, Buy uŁ Sell) and displays also
the price and the warranties of the agreement. In particular,
we have that

glb(K, Buy uŁ Sell) = 0.7
HasPrice = 22000.0

HasKMWarranty = 175000.0
HasMWarranty = 0.0 .

So an optimal match (the Pareto optimal degree is 0.7625)
would be an agreement with a price of 22500 euro, with
100000 kilometer warranty and a 60 month warranty.

B. Fuzzy control

In this subsection we will describe how to use fuzzyDL to
represent Mamdani fuzzy IF-THEN rules and to reason with
them (differently from [1], which only allows to represent
fuzzy controllers). The interesting thing is that it is not
only possible to represent a fuzzy control problem, but also
background knowledge related to it.

In order to represent a fuzzy control problem we proceed
as follows. Firstly, for each variable of the system, we define
a concrete feature representing it and specify its range (a
subset of the reals [k1, k2]). Then, we define the different
linguistic labels, which will be used to describe the value
of these variables, using triangular fuzzy concepts. Next, we
define a concept resuming the rule base. It is well known,
that a set {r1, . . . , rp} of Mamdani rules ri of the form
(1) can be transformed in a concept Mamd of the form⊕

i={1,...,p}(Ai1 ⊗ · · · ⊗Ain ⊗Bi) [10].
In general, ⊕ is assumed to be the Gödel t-conorm and ⊗

the Gödel t-norm, but we recall that fuzzyDL allows to use
other fuzzy operators. Then, we represent the input of the
system as fuzzy assertions involving an individual fc.

For the sake of concrete illustration, consider an adaption
of the simple example available at http://en.wikipedia.
org/wiki/Fuzzy_system. It considers the design of a
fuzzy controller for an anti-lock braking system. The en-
coding in fuzzyDL is shown in Table III. The system has two
input variables, temperature and pressure, which are used to
compute an output value which will adjust the throttle.

• temperature has 5 labels associated: cold, cool, nominal,
warm and hot.

• pressure has 5 labels: weak, low, ok, strong and high.
• throttle has 7 labels: N3 (large negative), N2 (medium

negative), N1 (small negative), Z (zero), P1 (small
positive), P2 (medium positive) and P3 (large positive).

The rules of the system are the following:
1) IF temperature IS cool AND pressure IS weak, THEN throttle

is P3.
2) IF temperature IS cool AND pressure IS low, THEN throttle

is P2.
3) IF temperature IS cool AND pressure IS ok, THEN throttle

is Z.
4) IF temperature IS cool AND pressure IS strong, THEN

throttle is N2.

The linguistic labels of the variables are defined using
fuzzy concrete concepts. For example, TempCool, the label
representing that the temperature is cool, can be defined as
triangular(480, 500, 520), ThrottleP2 as triangular(10, 15,
20) and ThrottleZ as triangular(15, 20, 25).

Now assume that the temperature is 489.6, which
(in abstract syntax) is represented using the assertion
〈fc : (= temperature 489.6)〉. Then, µcool(481.92) =
triangular(480, 500, 520)(489.6) = 0.48. We also assume
that the pressure is p and that µlow(p) = 0.57, µok(p) = 0.25
and µweak(p) = µstrong(p) = µhigh(p) = 0. That is, the
temperature is in the cool state, the pressure is in the low
and ok states, in such a way that only rules 2 and 3 are fired.

Rule 2 is fired with a degree min{0.48, 0.57} = 0.48,
so throttle is P2 with degree 0.48. Rule 3 is fired with a
degree min{0.48, 0.25} = 0.25, so throttle is Z with degree
0.25. These two values for throttle are aggregated using the
maximum. Then, defuzzification step is performed. It can be
verified that LOM = 17.6, MOM = 15 and SOM = 12.4.

For a concrete feature t representing an output variable of
the system, LOM is implemented in the following steps.

1) Compute the maximum degree γ of satisfiability of
concept Mamd (using individual fc), that is, we
determine (max-sat? Mamd fc).

2) Ensure that fc belongs to Mamd with degree γ. i.e.,
we add the assertion 〈fc :Mamd, γ〉 to the KB.

3) Maximize the value of the (internal) variable represent-
ing the value of t.

The SOM can be computed in a similar way, but minimizing
the value of the (internal) variable representing the value of
t. Finally, MOF can be computed as (LOM + SOM)/2.

VI. CONCLUSIONS

The aim of this paper was to present salient features of the
fuzzyDL system (in terms of syntax and semantics), which

is an expressive reasoner for fuzzy DLs. We have shown
that fuzzyDL significantly extends fuzzy SHIF by allow
several additional features. We have also shown two use
cases, namely logic-based matchmaking and fuzzy control,
which are not supported by any other fuzzy DL system so
far (see below).

A. Related work

There exist some other reasoners for fuzzy DLs (in chrono-
logical order):

• Fire [22] implements a tableau algorithm for fuzzy
SHIN restricted to the Zadeh semantics. An interesting
feature is its graphical interface, although users need to
deal directly with the syntax of the language for the
representation of the fuzzy KB.

• GURDL [8] supports an extension of ALC with an
abstract and more general notion of uncertainty. The
reasoning algorithm is also based on a mixture of
tableau rules and the resolution of a set of inequations.
Moreover, they propose some interesting techniques
of optimization and study the applicability of some
techniques used in the crisp case.

• DeLorean [4] reduces reasoning in fuzzy SHOIN
under Zadeh semantics to reasoning in crisp SHOIN ,
considering some optimizations. As a consequence, it
allows to reuse classical languages and resources (edi-
tors, tools, reasoners . . .).

• GERDS [9] implements a resolution algorithm for fuzzy
ALC under Łukasiewicz logic, extended with role nega-
tion, top role and bottom role.

• YADLR [15] is a recent implementation of a resolution-
based algorithm for Łukasiewicz logic. The authors have
claimed that all existing implementations require that
the degrees of all assertions in the KB are numerical
constants and that YADLR is the first reasoner allowing
also variables, but fuzzyDL has supported this since its
first version (published in Internet on June 2006).

While Fire and DeLorean allow the use of some DL
constructs which fuzzyDL (still) do not support (cardinality
restrictions and, in the case of DeLorean, also nominals)
and GURDL supports a more general representation of
uncertainty, not being limited to fuzzy logic, none of them
support most of the already discussed features of fuzzyDL,
especially in what regards expressivity of the representation.
That are, explicit fuzzy sets, concepts modifiers, data types,
defuzzification . . . , which we consider as the most important
features for fuzzy DL languages.

B. Future work

fuzzyDL reasoner is in constant update. Future work will
include the extension of the expressivity of the logic (espe-
cially the implementation of the algorithms to reason with
a product family of fuzzy operators [5] and with fuzzy role
hierarchies [26]), the development of a graphical interface
for fuzzy ontologies representation and the implementation
of some optimization techniques to reduce the running time.

% Concrete features
(fun temperature)
(fun pressure)
(fun throttle)

% Labels for the variables
TempCool = triangular(480,500,520), . . .
PressLow = triangular(30,40,45), PressOK = triangular(40,48.6,57.2), . . .
ThrottleP2 = triangular(10,15,20), ThrottleZ = triangular(15,20,25), . . .

% Encoding of Mamdami Rules
Rule1 = ((∃temperature.TempCool) uG (∃pressure.PressWeak) uG (∃throttle.ThrottleP3))
Rule2 = ((∃temperature.TempCool) uG (∃pressure.PressLow) uG (∃throttle.ThrottleP2))
Rule3 = ((∃temperature.TempCool) uG (∃pressure.PressOK) uG (∃throttle.ThrottleZ))
Rule4 = ((∃temperature.TempCool) uG (∃pressure.PressStrong) uG (∃throttle.ThrottleN2))

% Encoding of Mamdami Rule base
Mamd = (Rule1 tG Rule2 tG Rule2 tG Rule3)

% Input to the controller
fc :(= temperature 489.6)
fc :(= pressure 42.15)

% Output of the controller
(defuzzify-lom? Mamd fc throttle)

TABLE III
FRAGMENT OF AN EXAMPLE OF FUZZY KB FOR FUZZY CONTROL.

ACKNOWLEDGMENT

The research of F. Bobillo has been partially supported by
a FPU scholarship and project TIN2006-15041-C04-01, both
from the Spanish Ministerio de Educación y Ciencia.

REFERENCES

[1] G. Acampora and V. Loia Using FML and fuzzy technology in
adaptive ambient intelligence environments International Journal of
Computational Intelligence Research 1(2):171–182, 2005

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. F. Patel-
Schneider, editors. The description logic handbook: Theory, imple-
mentation, and applications. Cambridge University Press, 2003.

[3] T. Berners-Lee, J. Hendler and O. Lassila. The semantic web. Scientific
American, 284(5):34–43, 2001.

[4] F. Bobillo, M. Delgado and J. Gómez-Romero. Optimizing the crisp
representation of the fuzzy description logic SROIQ. In Proceedings
of the 3rd ISWC Workshop on Uncertainty Reasoning for the Semantic
Web (URSW 2007). CEUR Workshop Proceedings, 2007.

[5] F. Bobillo and U. Straccia. A fuzzy description logic with product
t-norm. In Proceedings of the 16th IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE 2007), pp. 652–657, 2006.

[6] S. Calegari and D. Ciucci, Fuzzy ontology, fuzzy description logics
and fuzzy-OWL. In Proceedings of the 7th International Workshop on
Fuzzy Logic and Applications (WILF 2007), volume 4578 of Lecture
Notes in Computer Science, pp. 118–126. Springer Verlag, 2007.

[7] C. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence 19:17–37, 1982

[8] V. Haarslev, H. I. Pai and N. Shiri. Optimizing tableau reasoning
in ALC extended with uncertainty. In Proceedings of the 2007
International Workshop on Description Logics (DL-2007), pp. 307–
314, 2007.

[9] H. Habiballa. Resolution strategies for fuzzy description logic. In
Proceedings of the 5th Conference of the European Society for Fuzzy
Logic and Technology (EUSFLAT 2007), vol. 2, pp. 27–36, 2007.

[10] P. Hájek. Metamathematics of fuzzy logic. Kluwer, 1998.
[11] P. Hájek. Making fuzzy description logics more general. Fuzzy Sets

and Systems, 154 (1), 1–15, 2005.
[12] S. Hölldobler, H.-P. Störr and T. D. Khang. The fuzzy description

logic ALCFH with hedge algebras as concept modifiers. Journal of
Advanced Computational Intelligence, 7(3):294–305, 2003.

[13] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. Journal of Web Semantics, 1(4):345–
357, 2004.

[14] G. Klir and B. Yuan. Fuzzy sets and fuzzy logic: Theory and
applications. Prentice-Hall, 1995.

[15] S. Konstantopoulos and G. Apostolikas. Fuzzy-DL reasoning over
unknown fuzzy degrees. In Proceedings of the 3rd International
Workshop on Semantic Web and Web Semantics (SWWS 07), 2007.

[16] T. Lukasiewicz and U. Straccia. An overview of uncertainty and
vagueness in description logics for the semantic web. Technical Report
INFSYS RR-1843-06-07, Technische Universität Wien, 2006.

[17] C. Lutz. Description logics with concrete domains - A survey. In
Advances in Modal Logics Volume 4. King’s College, 2003.

[18] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis
with a fuzzy logic controller. International Journal of Man-Machine
Studies 7(1):1–13, 1975.

[19] D. L. McGuinness and F. van Harmelen. OWL Web Ontology
Language Overview, 2004. Retrieved October 1st, 2007, from http:
//www.w3.org/TR/owl-features.

[20] A. Ragone, U. Straccia, F. Bobillo, T. Di Noia, E. Di Sciascio and F.
M. Donini. A fuzzy description logic based approach to matchmaking
in e-marketplaces. Submitted.

[21] H. Salkin and M. Kamlesh. Foundations of integer programming.
North-Holland, 1988.

[22] G. Stoilos, N. Simou, G. Stamou and S. Kollias. Uncertainty and the
semantic web. IEEE Intelligent Systems 21(5): 84–87, 2006.

[23] U. Straccia. Reasoning within fuzzy description logics. Journal of
Artificial Intelligence Research, 14:137–166, 2001.

[24] U. Straccia. Description logics with fuzzy concrete domains. In
Proceedings of the 21st Conference on Uncertainty in Artificial In-
telligence (UAI-05), pp. 559–567. AUAI Press, 2005.

[25] U. Straccia. A fuzzy description logic for the semantic web. In
E. Sanchez, editor, Fuzzy Logic and the Semantic Web, Capturing
Intelligence, chapter 4, pp. 73–90. Elsevier, 2006.

[26] U. Straccia. Reasoning in Ł-SHIF : an expressive fuzzy description
logic under Łukasiewicz semantics. Technical report ISTI-018/2007,
ISTI - CNR, 2007.

[27] U. Straccia and F. Bobillo. Mixed integer programming, general
concept inclusions and fuzzy description logics. In Mathware & Soft
Computing 14(3):247–259, 2007.

[28] C. Tresp and R. Molitor. A description logic for vague knowledge. In
Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI-98), 1998.

[29] J. Yen. Generalizing term subsumption languages to fuzzy logic. In
Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI-91), pp. 472–477, 1991.

[30] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353,
1965.

